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Preface

This book is a work in progress. It is a collection of expanding lecture notes on statistics as used by

biologists such as botanists, zoologists, and ecologists. It is intended to be a resource for students

and researchers who are interested in learning more about the subject and applying it to their

data. The material is presented in a way that is accessible to those with a thorough understanding

of biology and a willingness and interest to learn the application of statistical analyses to their

data.

Although the book is primarily aimed at biologists, it is also suitable for students and researchers

in other fields who require subjecting their data to inferential statistical analyses. The material

is presented in a way that is accessible to those with a good understanding of biology, but who

might not necessarily have a deep interest of background in mathematics or statistics.

The examples in this book require that the reader already possesses a goodworking knowledge

of the R programming language. If you are not familiar with R, I recommend that you take a look

at the excellent book R for Data Science by HadleyWickham and Garrett Grolemund. Or, study

the material provided on The Tangled Bank website.

The reader is also required to already have a good grasp of exploratory data analysis (EDA),

descriptive (summary) statistics, and data visualisation. If you are not familiar with these topics, I

recommend that you take a look at the excellent book Exploratory Data Analysis with R by Roger

D. Peng, or look at the material on The Tangled Bank.

The book is divided into several chapters, each of which covers a different aspect of statistics.

The chapters are organised in a logical order, starting with the basics of probability and moving on

to more advanced topics such as hypothesis testing, regression analysis, and multivariate statistics.

Each chapter is accompanied by a set of exercises that are designed to help the reader understand

the material and apply it to real-world problems.

1
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Chapter 1

Introduction

1.1 The Scientific Method in Practice

Answering questions about the natural world using the scientific method requires that we draw

on many years’ of accumulated knowledge and experience. This workflow unpacks into roughly

the following sequence of steps:

1. Look around you at the world, be curious about it, and ask questions to figure out an expla-

nation for the pattern or phenomenon that tickled your interest.

2. Create an unambiguous statement of the question youwant to answer, think about what is

causing the pattern or phenomenon you observed, and how you might go about measuring

the response (the thing you observed initially).

3. Translate this question into a testable hypothesis. This is the statement that you can test

using the data you will collect.

4. Design an experiment or sampling campaign to collect data that will allow you to test this

hypothesis. Clearly understand what the data you’ll collect will look like, both for the re-

sponse and the explanatory variables. For example, do you have a categorical or continuous

predictor, is the response continuous, binary, ordinal, etc.? For this, you should have a firm

grasp of the various kinds of Data Classes and Structures in R.

5. Think deeply about any confounding influences that might affect your data, and specify

exactly what additional data you will have to collect to isolate the hypothesised influence

in your analysis. You need to fully understand all the ways that factors not considered in

your hypothesis might affect your study’s outcome. Omissions cannot be rectified after the

fact without repeating the entire experiment or sampling work. It requires knowledge and

experience to avoid confounding influences ruining your work.

6. Depending on your experiment’s design (4) and the nature of the data you’ll obtain (4, 5),

choose the appropriate statistical methods to analyse them. You should be able to develop

a good idea of what statistical methods you’ll use—even before the experiment has been

done! Decide on the parametric test, or, should the statistical god with the dice not provide

an outcome that favours your expectations, you can also decide upfront on a non-parametric

equivalent. It is important not to decide on the statistical method after you’ve collected the

data. This is called p-hacking, and it is almost a cardinal sin in science.

7. Do the experiment or go out into the world to sample, and collect the data. Have fun—this

is why we do science, afterall!

8. Go have a few drinks after a hard day’s work and celebrate your success.

3

https://tangledbank.netlify.app/BCB744/basic_stats/01-data-in-R.html


4 CHAPTER 1. INTRODUCTION

9. Analyse your newly-collected data. This will include explaratory data analyses (see Exploring

With Summaries and Descriptions and Exploring With Figures), and then the application of

the statistical methods you chose in step 6.

10. Communicate your results in tables and figures.

This textbook deals with many of these steps (except for 1, 5, 7, and 8). This knowledge is

codified in the form of the statistical method, which provides a systematic framework for collect-

ing,1 analysing, and interpreting data. In this chapter, I will introduce the fundamental concepts of

inferential statistics, which allow us to make inferences about populations based on sample data.

I will also provide an overview of the types of statistical methods used in inferential statistics, and

discuss the importance of understanding the assumptions underlying these methods.

1.2 Inferential Statistics

This book covers the suite of inferential statistics available to biologists. These methods are the

cornerstone of hypothesis-driven scientific research. Inferential statistics provide the tools needed

to generalise from a sample to a population or to make predictions about future observations. In

doing so, we can draw general conclusions or test hypotheses about populations or processes.

Inferential statistics build upon basic exploratory data analysis (EDA), which often includes

a substantial use of descriptive (or summary) statistics. Descriptive statistics describe and sum-

marise the characteristics of a dataset, such as its central tendency, variability, and distribution.

While descriptive statistics offer a snapshot of the data, they do not allow us to draw conclusions

about the population from which the data were sampled.

Descriptive and inferential statisticswork hand in hand, with the former laying the groundwork

for more advanced analyses. Inferential statistics allow us not only to draw conclusions from our

data but also to quantify the uncertainty associated with these inferences. This uncertainty arises

becausewe are analysing only a sample andwish to generalise our insights to the entire population

from which the sample was drawn. Inferential statistics offer a systematic framework for making

these inferences and assessing the strength of the evidence supporting a hypothesis.

The type of statistical approach we choose depends heavily on the biological processes that

generate our data. The confident application of inferential statistics is grounded in an understand-

ing of both biological theory and the data’s characteristics. A key element in choosing the right

approach is recognising that the probability distribution of your data is closely linked to the nat-

ural processes that produce the observed outcomes. Biological data can be influenced by many

factors, such as genetics, environmental conditions, and random variation, all of which shape the

underlying distribution. For example:

1. Plant Height (Normal Distribution): The heights of individual plants in a population typically

follow a normal distribution. This distribution arises from the combined effects of genetic

factors and environmental conditions that influence plant growth, such as soil quality, light,

and water availability.

2. Litter Size in Mammals (Poisson Distribution): In many mammal species, the number of

offspring per litter may follow a Poisson distribution, which is common for count data. This

distribution reflects the biological processes involved in reproduction, where most females

have an average litter size, and larger litters are progressively rarer.

1Yes, statistics also informs us about how to collect data.

https://tangledbank.netlify.app/BCB744/basic_stats/02-summarise-and-describe.html
https://tangledbank.netlify.app/BCB744/basic_stats/02-summarise-and-describe.html
https://tangledbank.netlify.app/BCB744/basic_stats/03-visualise.html
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1.3 Parametric orNonparametric: UnderstandingYourData’s Dis-

tribution

Inferential statistics can be broadly categorised into parametric and nonparametricmethods. The

choice between them hinges on understanding the distribution of our data and the assumptions

underlying each method. Parametric statistics traditionally rely on specific assumptions about the

underlying probability distribution of the population from which the sample data are drawn. The

two key assumptions are normality, where the data follow a normal (Gaussian) distribution, and

homoscedasticity, which requires equal variances across groups or levels of predictors.

However, parametric methods don’t always require normally distributed data. The core require-

ment is that the data follow a known probability distribution, which must be specified in advance.

Many biological datasets don’t follow a normal distribution but can still be analysed using para-

metric methods. This flexibility is evident in Generalised Linear Models (GLMs), which extend the

parametric framework to accommodate a wider range of response variables.

GLMs can handle various distributions, such as Poisson for count data or binomial for binary

outcomes. They use a link function to relate the mean of the response to the predictors, adhering

to parametric principleswhile offering flexibility for non-normal data. This makes GLMswell-suited

for ecological and biological datasets, where non-normal data are common. Many statistical tests

have been extended to other probability distributions. Examples include Generalised Additive

Models (GAMs), which are semi-parametric methods, Generalised Non-Linear Models (GNLMs)

that fit non-linear models to non-parametric data, and Generalised Linear and Non-Linear Mixed-

Effects Models (GLMMs and GNLMMs) that handle hierarchical data.

When data don’t conform to any known distribution, nonparametric statistics offer an alterna-

tive. Theymake fewer assumptions about the data’s distribution and are more robustwhen dealing

with non-standard or unknown distributions. This makes them suitable for biological processes

not easily captured by parametric models.

Choosing between parametric and nonparametric methods involves several considerations.

First, it’s important to assess whether your data meet the assumptions of parametric tests. Specific

tests for this purpose will be discussed in Section X. Sample size is another crucial factor. Para-

metric methods can often tolerate moderate violations of the normality assumption due to the

Central Limit Theorem (CLT), especially with large sample sizes. The CLT states that the sampling

distribution of the sample mean approaches a normal distribution as the sample size increases,

even if the underlying population is not perfectly normal.

When assumptions are met, parametric tests are more powerful. However, they are also more

sensitive to violations of their assumptions. Therefore, we must consider the nature of our data

and the processes that generated them when choosing a statistical approach.

1.4 The Statistical Toolbox

I broadly categorise parametric and nonparametric methods into four main types, each serving

different research applications2:

1. Hypothesis Tests: These parametric and non-parametric techniques assess whether sample

data provide evidence for or against a specific claim (hypothesis) about population parame-

2This categorisation reflects my teaching approach, based on the order in which I think topics need to be covered,

rather than a strict classification by statisticians. It is intended to provide a high-level overview of the types of statistical

methods used in inferential statistics.
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ters such as their means, medians, proportions, variances, or correlations between variables.

Common hypothesis tests include:

• Comparisons of groupmeans ormedians for a continuous variable (e.g., t-tests, ANOVA,

Mann-Whitney U test)

• Comparisons of group proportions for a categorical variable (e.g., 𝜒-square test, Fisher’s
exact test)

• Assessments of the relationship between two continuous or ordinal variables (e.g.,

Pearson’s correlation, Spearman’s rank correlation)

2. Regression Analysis: Regression with its parametric and non-parametric offerings lets us

analyse the relationship between a response variable and one or more predictor variables.

Regression models estimate coefficients representing the predictor effects, allow for pre-

diction of the response, and enable hypothesis tests on the predictors. Common regression

models include:

• Linear regression for continuous response variables

• Logistic regression for binary response variables

• Generalised linear models (GLMs) for non-normal response variables

• Various non-linear regressions for complex relationships, such as generalised additive

models (GAMs)

3. Survival Analysis: Methods like the Kaplan-Meier estimator and Cox proportional hazards

model analyse time-to-event data, where the interest lies in modelling the waiting times

until certain events occur. I do not cover survival analysis in this book or any of my modules.

4. Multivariate Analysis: This includes an assortment of methods to analyse multiple response

and predictor variables simultaneously. Dimension reduction methods, such as canonical

correlation analysis (CCA) and non-metric multidimensional scaling (nMDS), help simplify

complex datasets by identifying key patterns and relationships. Classification, including clus-

ter analysis, is used to group similar observations together based on their characteristics.

Multivariate approaches make fewer assumptions about the data’s distribution, and there

are techniques to deal with parametric and non-parametric data types (often without dis-

crimination). Although these methods are not covered in this textbook, they are taught in

my Quantitative Ecology module, which will eventually be developed into its own textbook.

I will cover the parametric methods first, in Part A, followed by non-parametric methods in

Part B. Part C of the book will look at semi-parametric methods, which combine aspects of both

parametric and non-parametric statistics

1.4.1 A. Hypotheses About the Means of Groups

The simplest form of comparison is to test whether the sample means of two or more groups

differ.3 Although this seems quite unimaginative, comparisons of the measures of central tendency

are very common statistical tests in biology. Because this concept is so simple to understand, it

serves as a good starting point for learning about hypothesis testing and the interpretation of the

statistics which tell us about the strength of the evidence for or against our hypotheses.

3If 𝑌 not independent across the range of 𝑋, use a different type of regression model, such as a linear mixed-effects
model.

https://tangledbank.netlify.app/BCB743/BCB743_index.html
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Youmight have hypotheses that require you to compare themeans of the outcomes of different

experimental treatments, differences in the number of sea urchins among populations of kelp, or

the number of species within replicate samples taken from different vegetation types. Look at

some of the following examples to see if any of them resonate with your own research question,

and then use this as a guide to find the appropriate statistical test in this book.

One-Sample t-Test (Section X.X.X)

Example: Is the mean height of a sample of Protea sp. grown in a specific experimental landscape

(given below) different from the known (established a priori) average height of the same species

(163.3 ± 15.5 cm) in the general population?

Height

1 150

2 152

3 148

8 150

9 149

10 148

The example requires that you have one normally-distributed continuous outcome variablewith

independent observations and that youwant to compare its mean value against a known population

mean established a priori.

In this case, you’ll want to use the R function t.test(). Since this function can accommodate

data with equal or unequal variances4 via the var.equal argument, you only need to assure the

data are normally distributed. The test can be one-sided or two-sided. Alternatively, consider

non-parametric alternatives, such as the Wilcoxon signed-rank test.

Two-Sample t-Test (Section X.X.X)

Example: Is the average number of leopard cubs born per female leopard in the Overberg region

different from that in the Cederberg region? The dataset is:

Region Cubs_Per_Female

1 Overberg 2

2 Overberg 3

3 Overberg 2

18 Cederberg 3

19 Cederberg 2

20 Cederberg 1

This requires that we obtain two samples of continuous, normally-distributed measurements. In

other words, our experiment or sampling campaign will include two groups (sometimes two treat-

ments, other times a treatment and a control) and we collect a sample of measurements of the

response in both of them. This is again catered for by the t.test() function, and, as before, we

don’t have to fuss too much about the variances as equal and unequal variances can be accom-

modated. If the normality assumption is not met, consider a non-parametric alternative such as

the Mann-Whitney U test.

4The dependent variable can also be ordinal, but this is less common. If this is the case, use *ordinal (logistic) regression

instead.
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A variant of the two-sample t-test is the paired t-test, which is used when the two samples

are related (not independent); for example, the same individuals are measured before and after

applying a treatment.

Analysis of Variance (ANOVA) for >2 Samples (Section X.X.X)

Example: Is the chirp rate of bladder grasshoppers different between the four seasons?

Table 1.1: Chirp Rate Data for Bladder Grasshoppers Across Four Seasons

Season Chirp Rate

1 Spring 17.7

2 Spring 13.9

3 Spring 15.7

58 Winter 10.2

59 Winter 4.0

60 Winter 10.6

We have three ormore samples of continuous, normally-distributed observations. These data must

also have more-or-less equal variances, so the homoscedasticity assumption is important. The

aov() function in R is used to perform the ANOVA, which can be one-way, two-way, a repeated

measures ANOVA, or an ANCOVA.5 If the normality or homoscedasticity assumptions are not

met, consider non-parametric alternatives, such as the Kruskal-Wallis test, or try transforming the

data.

Analysis of Covariance (ANCOVA)* (Section X.X.X)

Example:We have a set of data about African penguins and we want to determine if there are

differences between male and female penguins in terms of their mean foraging time, and if that

difference is influenced by their diving depth. The dataset is as follows:

In this example, we are interested in the mean foraging time of male and female penguins,

controlling for their diving depth. AnANCOVA focuses on the differences in means (the categorical

variable), and the continuous covariates (diving depth) is specifically controlled for to remove

its effect from the dependent variable. This reduces the error variance and so more accurately

assesses the comparison of group means. The assumptions of normality and homoscedasticity

apply. The functions aov() accommodates the categorical and continuous predictors.

Multivariate Analysis of Variance (MANOVA)

MANOVAs are similar to ANOVAs, except here you have multiple dependent variables, all indepen-

dent, continuous, and normally-distributed. This is useful when you want to compare the means of

5A repeated measures ANOVA is used when the same subjects are measured at different time points or under different

conditions. A two-way ANOVA is used when there are two independent variables (there are also higher-order ANOVAs

but they become more of a pain to interpret and require cumbersome experimental designs). An ANCOVA is used when

you want to compare the means of groups while controlling for the effect of a continuous covariate. There are many kinds

of ANOVA designs and each relates to specific experimental designs well beyond the scope of this book. Tony Underwood

provides a pedantic overview of ANOVA designs in his book Experiments in Ecology (Underwood 1997) if you really want

to go there.
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Table 1.2: Foraging time and diving depth of African penguin.

Sex Foraging time (hr) Diving depth (m)

Male 1.2 10

Male 1.5 15

Male 1.8 20

Female 2.0 25

Male 2.3 30

Female 2.5 35

Female 2.8 40

Female 3.0 45

Male 3.3 50

Male 3.5 55

multiple groups across multiple dependent variables. For example, you might want to compare

the average foraging time together with diving depth of African penguins in three colonies (two in

South Africa and one in Namibia) around the coast. The manova() function in R is used to perform

a MANOVA and there are similar variants to what we have seen in ANOVA.

1.4.2 B. Hypotheses About the Proportions of Groups

You can compare the proportions of groups using tests for proportions when the outcome vari-

able is binary (e.g., success/failure, presence/absence, up/down, day/night). These tests are used

to determine if the proportion of successes differs between groups. Use the following tests to

compare group proportions:

One-Sample Test for Proportions

Example: Is the proportion of African penguins foraging in a specific colony different from the

known proportion of the same species in the general population? The data might look like this:

• Sample data: 55 of the 100 penguins observed were foraging in a specific

colony

• The known proportion of penguins foraging in the general population is

60%

In this scenario, we are comparing the proportion of a single sample (the proportion of foraging

African penguins in a specific colony) to a known population proportion. The data must consist of a

binary outcome variable (e.g., foraging vs. not foraging) and the observations must be independent.

The prop.test() function in R is used to perform this test, which can be either one-sided or

two-sided. If the requirement of independent observations is not met, consider non-parametric

alternatives, such as the sign test.

Two-Sample Test for Proportions

Example: Is the proportion of endangered sea turtles successfully reaching the ocean different

between two beaches? Here are data:
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Table 1.3: Number of Sea Turtles Reaching the Ocean on Two Beaches

Beach Successes Observed

Beach A 75 100

Beach B 65 120

Here we compare the proportions from two independent samples (e.g., the proportion of sea

turtles successfully reaching the ocean on Beach A versus Beach B). As before, the data yield a

binary outcome (e.g., reached the ocean vs. did not reach the ocean) for each group, and the obser-

vations within each group are independent. The prop.test() function is used it has one-sided

or two-sided options. If the sample sizes are small or expected frequencies are low, consider using

Fisher’s exact test instead of the proportion test. If the assumption of independent observations

within groups is violated, you may need to consider methods that account for dependency in the

data, such as Generalised Estimating Equations (GEE) or mixed-effects models.

Chi-square Test for Count Data

Example: Is there an association between vegetation type and the presence of leopards in different

areas of Kruger National Park? A hypothetical dataset:

Table 1.4: Contingency Table of Plant Species and Insect Occurrence

Presence Absence

Grassland 20 30

Woodland 25 40

Shrubland 35 15

Here we examine the relationship between two categorical variables (vegetation type and

leopard presence) within Kruger National Park. The data are organised into a contingency table,

where each cell represents the count or frequency of observations for a specific combination

of categories. The chi-square test of independence is used to determine if there’s a significant

association between the variables.

As with other categorical tests, the data yield discrete outcomes (e.g., savanna, woodland, or

riverine for vegetation type; present or absent for leopard presence). The observations should be

independent, meaning the presence of a leopard in one area should not influence its presence in

another.

The chisq.test() function in R is commonly used for this analysis. This test compares the

observed frequencies in each cell of the contingency table to the frequencies that would be

expected if there were no association between vegetation type and leopard presence.

If the sample size is large and the expected frequencies in each cell are adequate (typically >

5), the chi-square test is appropriate. However, if the sample size is small or if there are cells with

low expected frequencies, consider using Fisher’s exact test instead.

If the assumption of independence is violated (e.g., if the data include multiple observations

from the same leopard individuals or territories), you may need to consider more advanced meth-

ods that account for dependency in the data, such as log-linear models or Generalised Estimating

Equations (GEE).
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Fisher’s Exact Test

Example: Is there a significant association between the presence of certain plant species and the

occurrence of rare fynbos endemic insects in the Cape Floristic Region? Here are the data:

Table 1.5: Contingency Table of Plant Species and Insect Occurrence

Present Absent

Plant A 2 8

Plant B 3 7

Fisher’s Exact Test is used when we have two categorical variables and want to determine if

there’s a significant association between them, particularly when sample sizes are small or when

we have sparse data in some categories. This test is especially useful in ecological studies where

rare species or events are being investigated.

In this example we examine the relationship between the presence of specific plant species

and the occurrence of rare fynbos endemic insects. The data are organised into a 2x2 contingency

table, where each cell represents the count of observations for a combination of presence/absence

of the plant species and the insect species.

The test calculates the exact probability of observing the given set of cell frequencies under

the null hypothesis of no association. It does not rely on approximations and it more accurate than

the chi-square test for small samples. Use the fisher.test() function to perform this analysis.

Like other categorical tests, the observations should be independent, meaning the presence of an

insect in one area should not influence its presence in another.

Fisher’s Exact Test is particularly appropriate when:

• The total sample size is less than 1000

• The expected frequency in any cell of the contingency table is less than 5

• You’re dealing with rare events or species

If the sample size becomesvery large, Fisher’s ExactTest can become computationally intensive,

and the chi-square test may be more practical.

If the assumption of independence is violated (e.g., if the data include multiple observations

from the same locations over time), you may need to consider more advanced methods that

account for dependency in the data, such as mixed-effects models or Generalised Estimating

Equations (GEE).

1.4.3 C. Hypotheses About the Strength of Association

Example: Is there a relationship between the foraging time and diving depth of African penguins?

You’ll want to use a Pearson’s correlation to determine if there is a linear relationship between

two continuous variables, both of them normally distributed and homoscedastic. A correlation

analysis does not presume causation and does not provide a predictive model, both of which

are the domain of regression. The strength of the relationship is quantified by the correlation

coefficient called Pearson’s rho, which ranges from -1 to 1. Use the cor.test(....., method =

"pearson") function in R to perform this analysis.

Non-parametric alternatives such as the Spearman’s rank correlation or Kendall’s tau correla-

tion (see ‘II. Non-Parametric Methods’) are available and implemented with the same R function.
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Table 1.6: Foraging time and diving depth of African penguin.

Foraging time (hr) Diving depth (m)

1.2 10

1.5 15

1.8 20

2.0 25

2.3 30

2.5 35

2.8 40

3.0 45

3.3 50

3.5 55

1.4.4 D. Modelling and Predicting Causal Relationships

The relationship between one or a fewpredictors and an outcome can be represented bya function,

which is a model that reconstructs part of the ‘reality’ of the observed phenomenon. Regression

analysis helps you understand how changes in the continuous predictor variable(s) drive changes

in a continuous outcome variable. Themodel quantifies the strength of the associations andmakes

predictions for new data points. You may use regression models for hypothesis testing and for

identifying which predictor variables have the most substantial impact on the outcome.

Simple Linear Regression

Example: The same dataset of foraging time and diving depth of African penguins can be used to

model the relationship between these two variables. Does diving depth depend on foraging time?

What is different now is that we are interested in predicting the diving depth (response) of

penguins based on their foraging time (predictor). Assuming there is a linear response, we can

use a simple linear regression model to quantify the relationship between these two continuous

variables. The model provides an equation that describes how the diving depth changes as the

foraging time increases. The assumptions of normality and homoscedasticity apply to the residuals,

and are accessed after having fit the model.

This calls for a simple linear regression model and you can fit it using the lm() function in R.

The model can also be specified as a generalised linear model (GLM) with glm(....., family =

gaussian).

If assumptions fail, apply data transformations (e.g., log, square root), robust regression (rlm()

inMASS package), or consider non-linear models.

Polynomial Regression

I’ll not provide an example here. It suffices to say that a polynomial regression is effectively a

simple linear regression that allows for a curvilinear relationship between the predictor and the

outcome. To accomplish this, the model includes polynomial terms (e.g., quadratic, cubic, which

are simply powers of the predictor) to capture the non-linear patterns in the data. The model can

be fit using the lm() function in R.
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Table 1.7: Foraging time and diving depth of African penguin.

BMI Foraging time (hr) Diving depth (m)

1.2 1.2 10

1.5 1.5 15

1.8 1.8 20

2.0 2.0 25

2.3 2.3 30

2.5 2.5 35

2.8 2.8 40

3.0 3.0 45

3.3 3.3 50

3.5 3.5 55

Assess the relationship between 𝑥 vs. 𝑦 by making a scatterplot of the data and eye balling a
best fit curve through the scatter of points. Is the line curvy or bendy? Do you know in advance

if a more complicated model describes the response? If the answer is ‘yes’ to the first and ‘no’ to

the second question, then a polynomial regression might be just the thing for you.

Multiple Linear Regression (MLR)

Example: I’ve added a second predictor to the dataset of foraging time and diving depth ofAfrican

penguins. Does diving depth depend on the penguins’ body mass index (BMI) and foraging time?

The only difference between this example and the simple linear regression is that we now

have two predictors (foraging time and BMI) instead of one. The predictors can be continuous (as

in the example) and/or categorical. If you are more concerned with the means of the categorical

variables, consider an ANCOVA as an alternative option. The multiple linear regression model can

be extended to include interaction terms between predictors. You can quantify the relationship

between both predictors and the outcome simultaneously, and ask which of the two best predicts

the response. The same assumptions apply as in the simple linear regression and we hope for a

linear relationship between 𝑥1 and 𝑥2 vs. 𝑦. Other considerations are provided in the chapter on
MLR.

The R functions lm() and glm(....., family = gaussian) accommodate situations such

as these where we have multiple predictors.

Generalised Linear Models (GLM)

GLMs are a class of regression models that extend the simple linear regression framework to

accommodate various types of response distributions. As such, they can accommodate data that

violate the assumptions of normality and homoscedasticity, as well as situations where the re-

sponse variable is not continuous.

Use GLMs to model count data (e.g., number of occurrences), binary outcomes (e.g., suc-

cess/failure), and other non-continuous response variables that cannot be adequately represented

by a normal distribution. Unlike linear models, which assume a normal error distribution, GLMs

specify the distribution of the response variable using a probability distribution from the exponen-

tial family, such as the Gaussian (normal), binomial, Poisson, or negative binomial distributions.

multiple_linear_regression.qmd
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GLMs incorporate a link function that relates the linear predictor (a linear combination of the

predictor variables) to the expected value of the response variable. This link function can take

various forms, including the identity (linear), logit (for binary data), probit, or other transforma-

tions, depending on the nature of the response variable and the desired relationship between the

predictors and the outcome.

The glm() function is a staple for fitting GLMs. It is designed to handle the exponential family

distributions and will allow you to specify the appropriate distribution and link function for your

data and research question. A few common types of GLMs are presented next.

Logistic Regression (Chapter 6)

You’ll encounter binomial data in experiments or processes with binary outcomes, such as

presence/absence, success/failure, or alive/dead. To model this type of data, you will want to

use logistic regression. Logistic regression estimates the log-odds of the outcome as a linear

combination of the predictor variables. The logistic function is then used to convert these log-

odds into probabilities, which range from 0 to 1, so it is suitable for predicting the likelihood of

the binary outcomes.

• UseWhen:You have a binary outcome variable and want to model the relationship between

predictors and the probability of the outcome.

• Data Requirements: Binary outcome, continuous or categorical predictors.

• Assumptions: Linear relationship between the log-odds of the outcome and predictors.

• Diagnostics: Check for influential observations, multicollinearity, and overall model fit.

• If Assumptions Fail: Consider interactions, alternative link functions (probit, complementary

log-log) in glm(), or non-linear logistic regression, zero-inflated models when excess zeroes.

• R Function: glm(....., family = binomial)

• Model Selection: Stepwise regression, regularisation techniques, information criteria (AIC,

BIC).

Poisson Regression (Chapter 6)

Typical examples of count data include the number of offspring, parasites, or seeds. Poisson

regression is used to model the relationship between predictors and the count outcome. The

model assumes that the count data follow a Poisson distribution, where the mean and variance

are equal. Poisson regression is suitable for data with a single count outcome.

• UseWhen:You have count data and want to model the relationship between predictors and

the count outcome.

• Data Requirements: Count outcome, continuous or categorical predictors.

• Assumptions: Equidispersion (variance equals the mean).

• Diagnostics: Check for overdispersion, excess zeros, and overall model fit.

• If Assumptions Fail: Negative binomial regression (glm.nb() in theMASS package, overdis-

persion), zero-inflated models (zeroinfl() in the pscl package, excess zeros).

• R Function: glm(....., family = poisson)

Negative Binomial Regression

Negative binomial regression is an extension of Poisson regression that accommodates overdis-

persion, where the variance exceeds the mean. It is used when the count data exhibit more vari-

ability than expected under a Poisson distribution. The model assumes that the count data follow

a negative binomial distribution, which has an additional parameter to account for overdisper-

sion. Biological and ecological processes such as species abundance, parasite counts, and gene

expression often exhibit overdispersion.
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• Use When: You have count data with overdispersion and want to model the relationship

between predictors and the count outcome.

• Data Requirements: Count outcome, continuous or categorical

• Assumptions: Overdispersion (variance exceeds the mean).

• Diagnostics: Check for overdispersion, excess zeros, and overall model fit.

• R Function: glm.nb() inMASS package

Gamma Regression

Gamma regression is for modelling continuous, positive outcomes that exhibit a right-skewed

distribution and possibly also a non-constant variance (heteroscedasticity). The gammadistribution

is well suited for continuous measurements where the variability increases as the mean increases.

You might encounter this kind of distribution in growth rates, enzyme activity levels, species

abundance data, and other phenomena or processes characterised by positive, skewed data.

• Use When: You have a continuous, positive outcome and want to model the relationship

between predictors and the outcome.

• Data Requirements: Continuous, positive outcome, continuous or categorical predictors.

• Assumptions: Outcome values are positive, potentially non-constant variance.

• Diagnostics: Check for overall model fit, influential observations, and residual

• R Function: glm(....., family = Gamma)

Beta Regression

Beta regression is a statistical technique appropriate when the response variable is a continu-

ous proportion or rate bounded between 0 and 1. These types of data might, for example, arise

in ecology where one might study the proportions of time animals spend exhibiting different be-

haviours, the relative abundances of species in a community, or the proportions of habitat patches

comprising a landscape. Proportional data inherently exhibit heteroscedasticity (non-constant

variance).

• UseWhen: You have a proportional outcome (0 < 𝑦 < 1) and want to model the relationship
between predictors and the outcome.

• Data Requirements: Proportional outcome (0 < 𝑦 < 1), continuous or categorical predictors.
• Assumptions: Outcome values within (0, 1), potentially non-constant variance.
• Diagnostics: Check for overall model fit, influential observations, and residual analysis.

• IfAssumptions Fail:Transformations, consider alternative link functions, or zero/one-inflated

beta regression.

• R Function: betareg() in the betareg package

Modelling Non-Linear Relationships

We use non-linear models when the relationship between predictor variables and the outcome

variable is not linear. This non-linearity arises from the predictor variables themselves being non-

linearly related to the outcomeor from themodel’s parameters (coefficients) appearing non-linearly

in the functional form. The visualised response curve is typically curved, rather than a straight

line. These models are often derived from theoretical understanding or prior knowledge about

the underlying mechanisms governing the relationship between the predictors and the outcome

variables.

Non-Linear Least Squares (NLS) Regression (Chapter 7)

• UseWhen: The relationship between the predictors and the outcome is non-linear.

• Data Requirements: Continuous outcome, continuous predictors.
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• Assumptions: Appropriate functional form, normality, and homoscedasticity of residuals.

• Diagnostics: Check residual plots, normality of residuals, and leverage/influence points.

• R Function: nls() (for non-linear regression models with user-specified functions)

Generalised Non-Linear Models (GNLMs)

GNLMs are an extension of generalised linear models (GLMs) that allow for non-linear relation-

ships between the predictors and the outcome variable. GNLMs are used when the relationship

between the predictors and the outcome is non-linear, and the outcome variable follows a non-

normal distribution. GNLMs are particularly useful for count data, binary outcomes, and other

non-continuous response variables that exhibit non-linear relationships with the predictors.

Linear and Non-Linear Hierarchical Models (Mixed-Effects Models)

Hierarchical models are used when data are structured hierarchically, such as when multiple

observations are nested within higher-level units (e.g., plants within fields, sheep within range-

lands). These models account for the correlation between observationswithin the same group and

allow for the estimation of both fixed effects (population-level parameters) and random effects

(group-level parameters). Hierarchical models are also known asmultilevel models ormixed-effects

models.

Linear Mixed-Effects Models (LMMs) (Section X.X.X)

• Use When: You have nested or hierarchical data structures and the relationship between

the predictors and the outcome is linear.

• Data Requirements: Continuous outcome, continuous predictors, potentially with nested

or hierarchical data structures.

• Assumptions: Normality, homoscedasticity of residuals, correct specification of random

effects structure.

• IfAssumptions Fail:Consider transformations, robust regression, or non-linearmixed-effects

models.

• Diagnostics: Check residual plots, normality of residuals, and leverage/influence points,

assess random effects structure.

• R Function: lmer() in the lme4 package (for linearmixed-effects models with user-specified

functions)

Non-Linear Mixed-Effects Models (NLMMs) (Chapter 7)

• Use When: You have nested or hierarchical data structures and the relationship between

the predictors and the outcome is non-linear.

• Data Requirements: Continuous outcome, continuous predictors, potentially with nested

or hierarchical data structures.

• Assumptions: Appropriate functional form, normality, and homoscedasticity of residuals,

correct specification of random effects structure.

• If Assumptions Fail: Generalised non-linear mixed models (GNLMMs) and generalised addi-

tive mixed models (GAMMs) can be used when the assumptions of non-linear mixed models

(NLMMs) are violated. Else, consult a statistician.

• Diagnostics: Check residual plots, normality of residuals, and leverage/influence points,

assess random effects structure.

• R Function: nlme() in the nlme package (for non-linear mixed-effects models with user-

specified functions)

Generalised Linear and Non-Linear Mixed-Effects Models (GLMMs and GNLMMs)
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GLMMs and GNLMMs combine the flexibility of regressionmodel generalisation (i.e. by accom-

modating non-Gaussian distribution families) with the ability to account for nested or hierarchical

data structures. GLMMs are used when the outcome variable is not normally distributed (a dif-

ferent, known distribution) and the data are structured hierarchically. GLMMs include both fixed

effects (population-level parameters) and random effects (group-level parameters) and can accom-

modate a wide range of outcome distributions, including binary, count, and continuous outcomes.

• UseWhen:You have non-normally distributed outcome data and nested or hierarchical data

structures.

• Data Requirements: Binary outcome, continuous or categorical predictors, potentially with

nested or hierarchical data structures.

• Assumptions: Linear relationship between the log-odds of the outcome and predictors,

correct specification of random effects structure.

• Diagnostics: Check residual plots, normality of residuals, and leverage/influence points,

assess random effects structure.

• R Function: glmer() in the lme4 package

Other Regression Models

Zero-Inflated Models

• UseWhen:You have count datawith an excess of zeros andwant to model the zero-inflation

separately from the count process.

• Data Requirements: Count outcome, continuous or categorical

• Assumptions: Correct specification of zero-inflation and count processes, no omitted vari-

ables.

• Diagnostics: Check zero-inflation and count process, overall model fit.

• R Function: zeroinfl() in the pscl package

Survival Analysis

• Data Requirements: Time-to-event outcome, continuous or categorical predictors.

• Assumptions: Proportional hazards, non-informative censoring.

• Diagnostics: Check proportional hazards assumption, influential observations, and overall

model fit.

• R Function: survival:::coxph()

Time Series Analysis

• Data Requirements: Time-ordered data, potentially with autocorrelation.

• Assumptions: Stationarity, no autocorrelation in residuals.

• Diagnostics: Check autocorrelation, stationarity, and overall model fit.

• R Function: arima(), auto.arima() in the forecast package

Structural Equation Modelling (SEM)

• Data Requirements: Continuous outcome, continuous

• Assumptions: Correct specification of the structural model, no omitted variables, no mea-

surement error.

• Diagnostics: Check model fit, parameter estimates, and overall model validity.

• R Function: sem() in the lavaan package
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Bayesian Regression

• Data Requirements: Continuous outcome, continuous or categorical predictors.

• Assumptions: Correct specification of priors, likelihood, and model structure.

• Diagnostics: Check for convergence, posterior predictive checks, and overall model fit.

• R Function: brms:::brm()

1.5 II. Non-Parametric Methods (Distribution-Free)

Non-parametric statistics are statisticalmethods that do not relyon assumptions about the specific

form or parameters of the population distribution. They are also referred to as distribution-free

methods. These methods often use ranks or other order statistics of the data rather than the actual

data values themselves.

1.5.1 A. Hypotheses About Groups

One-Sample Tests for Medians

Use a one-sample test to compare the median of a single sample to a known population

median. It is as an alternative to one-sample t-tests when the data do not meet the assumptions

of parametric tests.

• Wilcoxon signed-rank test

• Sign test

Two-Sample Tests for Medians (Section X.X.X)

Use two-sample tests to compare the medians of two independent or related samples. Use it

when the assumptions of parametric two-sample tests are violated.

• Mann-Whitney U test (two independent groups)

• Wilcoxon rank-sum test (two independent groups)

• Kruskal-Wallis test (multiple groups)

• Friedman test (related samples)

1.5.2 B. Hypotheses About Proportions

• Chi-Square Test for Independence: Comparing proportions of two groups

1.5.3 C. Correlation Analysis for Tests of Association

Use non-parametric correlation to assess the strength and direction of a relationship between

two continuous (or ordinal) variables when the assumptions of parametric correlation tests cannot

be met.

Spearman’s Rank Correlation (Chapter 2)

A non-parametric measure of the strength and direction of association between two variables.

Kendall’s Tau Correlation (Chapter 2)

A non-parametric measure of the strength and direction of association between two variables.
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1.5.4 D. Regression Analysis

Quantile Regression (Section X.X.X)

Models different quantiles of the response distribution.

Robust Regression (Section X.X.X)

Less sensitive to outliers than ordinary least squares regression.

Kernel Density Estimation

KDE is a non-parametric method for visualising the distribution of a continuous variable. Unlike

histograms, which bin data into discrete intervals, KDE creates a smooth curve that represents

the estimated probability density function (PDF) of the underlying data. It does this by placing a

kernel function (often a symmetric curve like a Gaussian or Epanechnikov) at each data point and

summing up the contributions of these kernels across the entire range of the variable. The band-

width of the kernel controls the smoothness of the resulting density estimate. Wider bandwidths

lead to smoother curves but may obscure finer details, while narrower bandwidths reveal more

local fluctuations but can be noisy. KDE is useful when the underlying distribution of the data is

unknown or non-standard and it offers a convenient way to visualise and understand the shape

and spread of the data without being constrained by parametric assumptions.

Local Regression (LOESS)

LOESS (Locally Estimated Scatterplot Smoothing) is a non-parametric regression technique

that produces a smooth curve through a set of data points by fitting simple models to localised

subsets of the data. It achieves this by weighting the data points in each subset, with higher

weights assigned to points closer to the point being estimated. The model used for local fitting is

typically a low-degree polynomial, although other choices are possible.

LOESS is primarily used for data exploration and visualisation. It is best known for smoothing

scatterplots and revealing underlying trends or patterns in the data. It is advantageous because

it doesn’t assume any particular functional form for the relationship between the predictors and

the response variable, so it to adapts to various data shapes. But LOESS does not provide a single,

easily interpretable equation for the entire dataset, making it less suitable for making predictions

or drawing global inferences. It can also be computationally demanding with large datasets as it

fits separate models in the vicinity of locally-selected points.

Penalised Regression

Penalised regression (also known as regularisation) is used to enhance the performance of

regression models. This might be desirable when dealing with high-dimensional data or when the

predictor variables are highly collinear. It introduces a penalty to the regression objective function

which discourages the model from having overly complex or large coefficients. This effectively

prevents overfitting. Common types of penalised regression include Ridge regression (L2 regulari-

sation), which adds the sum of the squared coefficients as a penalty term, and Lasso regression (L1

regularisation), which adds the sum of the absolute values of the coefficients. The penalty terms

encourage simpler models by shrinking some coefficients towards zero, with Lasso potentially

setting some coefficients exactly to zero, thus performing variable selection. The balance between

fitting the datawell and maintaining model simplicity helps in improving the model’s generalisation

to new data. Penalised regression methods can achieve a trade-off between bias and variance and

result in more robust and interpretable models.

1.6 III. Semi-Parametric Methods

Semi-parametric methods combine parametric and non-parametric techniques to provide a bal-

ance between flexibility and efficiency. These methods are useful when the assumptions of para-
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metric tests are violated, but the data do not meet the requirements for non-parametric tests.

Semi-parametric methods are often more powerful than non-parametric tests, as theymake fewer

assumptions about the data distribution. These methods are particularly useful when the sample

size is small or when the data are skewed or have outliers.

Generalised Additive Models (GAMs) (Chapter 11)

• UseWhen: You have non-linear relationships between predictors and outcome.

• R Function: gam() in the mgcv package; also gamm4() in the gamm4 package

• Data Requirements: Continuous, binary, or categorical outcome, continuous or categorical

predictors, potentially with nested or hierarchical data structures.

• Advantages: Flexible modelling of non-linear relationships using smoothing functions, can

handle mixed-effects structures.

• Limitations: Interpretation can be challenging, potential overfitting.

Generalised Estimating Equations (GEEs)

• UseWhen: You have correlated data and non-normally distributed outcomes.

• R Function: geeglm() in the geepack package; also functions in the gee package

• Data Requirements: Correlated data, non-normal outcomes, continuous or categorical pre-

dictors.

• Advantages: Robust to misspecification of the correlation structure, can handle non-normal

outcomes, flexible in handling missing data.

• Limitations: Assumes correct specification of the correlation structure, may be less efficient

than mixed-effects models.

Semi-Parametric Survival Models

• UseWhen: You have time-to-event data and want to model the hazard function.

• R Function: coxph() in the survival package

• Data Requirements: Time-to-event data, censoring, continuous or categorical predictors.

• Assumptions: Proportional hazards assumption, independence of censoring.

• Diagnostics: Check proportional hazards assumption, influential observations, goodness

Spline Regression

• UseWhen: You have non-linear relationships between predictors and outcome.

• R Function: lm()with splines, gam() in the mgcv package

• Data Requirements: Continuous outcome, continuous predictors.

• Assumptions: Linearity within each spline, potentially non-constant variance.

• Diagnostics: Check for overall model fit, influential observations, and residual analysis.

• If Assumptions Fail: Transformations, consider alternative link functions, or penalised regres-

sion.

1.7 IV. Machine Learning Methods

Machine learning methods are a set of algorithms that can learn patterns from data without being

explicitly programmed. These methods are particularly useful for prediction, classification, and

clustering tasks. Machine learning models can handle complex relationships in the data and are

oftenmore flexible than traditional statistical models. However, they can be more computationally

intensive and may require more data to train effectively.
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Random Forests

Amachine learning method that uses an ensemble of decision trees to predict an outcome.

Support Vector Machines

Amachine learning method that finds the optimal hyperplane to separate two classes of data.

Ensemble Methods

A machine learning technique that combines the predictions of multiple models to improve

accuracy.

Neural Networks

A machine learning method that uses interconnected nodes to model complex relationships

in data.

Deep Learning

A subset of machine learning that uses neural networks with multiple layers to model complex

relationships in data.

1.8 V. Miscellaneous Methods

Bootstrapping

A resampling method for estimating the sampling distribution of a statistic.

Permutation Tests

A non-parametric method for testing hypotheses by randomly permuting the data.

Monte Carlo Simulation

Amethod for estimating the distribution of a statistic by generating random samples from a

known distribution.

Bayesian Methods

A statistical approach that uses Bayes’ theorem to update prior beliefs based on observed

data.

Dimensionality Reduction

Also called muitvariate analyses. A set of techniques for reducing the number of variables in a

dataset while preserving important information.

Clustering

A set of unsupervised learning techniques for grouping similar data points together.

Feature Selection

A process for identifying the most important variables in a dataset for predicting an outcome.

Regularisation

See penalised regression. A technique for preventing overfitting by adding a penalty term to

the model coefficients.

Cross-Validation

A method for estimating the performance of a model by splitting the data into training and

test sets.

Hyperparameter Tuning

The process of selecting the optimal values for the parameters of a machine learning model.

Model Evaluation

The process of assessing the performance of a model using metrics such as accuracy, precision,

recall, and F1 score.

Model Interpretation

The process of understanding how a model makes predictions by examining the relationship

between the input variables and the output.

Model Deployment
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The process of putting a trained model into production so that it can be used to make predic-

tions on new data.

Model Monitoring

The process of tracking the performance of a deployed model over time to ensure that it

continues to make accurate predictions.

Model Explainability

The process of explaining how a model makes predictions in a way that is understandable to

humans.

Model Fairness

The process of ensuring that a model does not discriminate against certain groups of people

based on sensitive attributes.

Model Robustness

The process of ensuring that a model performs well on new data that is different from the

training data.
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If the research question does not involve exploring the relationship between a response vari-

able and predictor variables, then non-regression inferential statistical methods would be more

appropriate. These include tests of means/medians, tests of proportions, correlation analysis, and

nonparametric tests. These methods are suitable when the goal is to compare groups, assess cen-

tral tendencies, test for differences, or measure the strength of association between two variables

without explicitly modeling the relationship.
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Chapter 3

Linear Regression

Linear models are frequently used statistical tools that all biologists should know. They describe

and quantify relationships between variables and are widely employed to predict the value of

a dependent variable (or response variable, 𝑌) based on the values of one or more independent
variables (or predictor variables, 𝑋). A linear model is an equation where the relationship between
the dependent variable and the independent variables is linear in the parameters (though not

necessarily in the variables themselves), allowing us to predict the dependent variable from the

predictors. In statistics, models are mathematical representations or descriptions of real-world

processes or systems. They offer idealised and simplified representations of reality and capture

the essential features and relationships we find interesting.

Regression analysis is a statistical technique used to estimate the parameters of the model

that best describes the relationship between a dependent variable and one or more independent

variables. The primary goal of regression analysis is to fit the model to the observed data and offer

insights into the strength and nature of the relationships between variables.

One of the simplest forms of linear models is the simple linear model, which is the topic of

this chapter. A simple linear model estimates model parameters through the process of simple

linear regression (SLR). SLR involves a single independent variable and is often applied when the

independent variable is hypothesised to causally influence the dependent variable. However, a

causal relationship is not a strict requirement. The primary goal of SLR may simply be to derive

a formula (model) that predicts the values of the dependent variable based on the independent

variable, regardless of whether a causal relationship exists between them.

SLR serves as a foundational regression technique that extends to more complex forms, includ-

ing polynomial regression (Chapter 4), multiple linear regression (MLR) (Chapter 5), and gener-

alised linear models (GLMs) (Chapter 6). Polynomial regression includes polynomial terms (higher

powers of the independent variable, like 𝑋2, 𝑋3, etc.) to model curvilinear relationships, while
MLR involves multiple independent variables to describe more complex relationships where the

dependent variable is influenced by several predictors simultaneously. GLMs further extend these

concepts to handle various types of dependent variables (besides responses drawn from the

normal distribution) and relationships (e.g. logistic).

In cases where prediction is not the primary objective, and causation is neither expected

nor implied, but one variable exhibits a systematic change with another, correlation analysis

(Chapter 2) is a more appropriate technique.

The terminology surrounding linear models and linear regression can sometimes be confusing

because we often use terms like ‘linear model,’ ‘linear regression,’ and ‘least squares regression’

interchangeably. But ‘linear model’ is a broader term that encompasses various types of linear

29
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relationships, including simple linearmodels, multiple linearmodels, polynomial models, and GLMs.

In this section, youwill learn about simple linear models and regression analysis, whichwill provide

you with the foundational knowledge to understand more complex linear models and regression

techniques.

3.1 Simple Linear Regression

Linear models help us answer questions like:

• How does body mass change with age in a particular species?

• Does the number of offspring depend on the amount of food available?

• How does a species’ geographic distribution change with temperature?

By assuming a linear relationship between variables, these models provide a clear and inter-

pretable way to quantify and predict biological outcomes. For example, should a linear model

describe the relationship between body mass (g) and age (years), we can predict the body mass of

a particular species of fish would increase by 230 g for every additional year of age up to the age

of five years (however, please see the von Bertalanffy model in Chapter 7.6).

The simple linear model is given by:

𝑌𝑖 = 𝛽 ⋅ 𝑋𝑖 + 𝛼 + 𝜖 (3.1)

Where:

• 𝑌𝑖 is the 𝑖-th measurement of the dependent variable,
• 𝑋𝑖 is the 𝑖-th measurement of the independent variable,
• 𝛼 is the intercept (the value of 𝑌when 𝑋 = 0),
• 𝛽 is the slope (the change in 𝑌 for a one-unit change in 𝑋), and
• 𝜖 is the error term (residual; see box ‘The residuals, 𝜖𝑖’).

INFO The residuals, 𝜖𝑖

In most regression models, such as linear regressions and those discussed in Chapter 7, we

assume that the residuals are independent and identically distributed (i.i.d.). This implies that

each residual 𝜖𝑖 is drawn from the same probability distribution and that they are mutually
independent. When the residuals follow a normal distribution, this can be expressed as

𝜖𝑖 ∼ 𝑁(0, 𝜎2), where:

• 𝜖𝑖 represents the residual for the 𝑖-th observation,
• 𝑁(0, 𝜎2) denotes a normal distribution with a mean of 0 and a variance of 𝜎2.

The requirement of a zero mean for residuals implies that, on average, the model’s predic-

tions neither systematically overestimate nor underestimate the true values. The constant

variance assumption ensures that the spread or dispersion of residuals around the mean

remains consistent across all levels of the predictor variables. This ensures that the model’s

accuracy is uniform across the range of data.

The requirement for independence indicates that the residual for any given observation is

not influenced by or correlated with the residuals of other observations. It also means that

the residual for an observation does not depend on the order in which the observations
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were collected (i.e. no serial correlation or auto-correlation). Independence ensures that

each data point contributes unique information to the model and prevents any systematic

patterns from influencing the estimates of the model’s parameters.

Violation of any of these assumptions could lead to biased or inefficient parameter estimates.

3.2 Nature of the Data

The experimenter must ensure the following key requirements for a simple linear regression:

1. Causality:There should be a theoretical or philosophical basis for expecting a causal relation-

ship, where the independent variable (𝑋) influences or determines the dependent variable
(𝑌).1 It is assumed that changes in 𝑋 cause changes in 𝑌.

2. Independence of Observations:

• The observations or measured values of 𝑌must be independent of each other. For each
value of 𝑋, there should be only one corresponding value of 𝑌, or if there are replicate
𝑌 values, they must be statistically independent and not influence each other.

• The observations of 𝑌 must also be independently across the range of 𝑋 values. This
means that the value of 𝑌 at one point should not influence the value of 𝑌 at another
point.2

3. Independent Variable Scale: The independent variable (𝑋) should be measured on a contin-
uous scale, such as integers, real numbers, intervals, or ratios.

4. Dependent Variable Scale: Similarly, the dependent variable (𝑌) should also be measured on
a continuous scale, such as integers, real numbers, intervals, or ratios.3

What if my data are not continuous?

• If the independent variable is ordinal, use ordinal regression.

• If the dependent variable is ordinal, use ordinal (logistic) regression.

What if I have more than one independent variable?

• Use multiple linear regression.

Additional assumptions and requirements are discussed next in Section 3.3.

1The independent and dependent variables are also called the predictor and response variables, respectively. The

predictor is often under the experimenter’s control (in which case it is a fixed effects model), while the response is the

variable predicted to respond in the manner hypothesised.
2If 𝑌 not independent across the range of 𝑋, use a different type of regression model, such as a linear mixed-effects

model.
3The dependent variable can also be ordinal, but this is less common. If this is the case, use *ordinal (logistic) regression

instead.
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3.3 Assumptions

The following assumptions are made when performing a simple linear regression; 1-3 must be

tested after fitting the linear model:

1. Normality: For each value of 𝑋, there is a corresponding normal distribution of 𝑌 values. Each
value of 𝑌 is randomly sampled from this normal distribution.

2. Homoscedasticity:The variances of the 𝑌 distributions corresponding to each 𝑋 value should
be approximately equal.

3. Linearity: There exists a linear relationship between the variables 𝑌 and 𝑋.
4. Measurement Error: It is assumed that the measurements of 𝑋 are obtained without error.
However, in practical scenarios, this is rarely the case. Therefore, we assume any measure-

ment error in 𝑋 to be negligible.

See Section 3.8 formore information about how to proceedwhen assumptions 1-3 are violated.

3.4 Outliers and Their Impact on Simple Linear Regression

In simple linear regression, outliers can have significant detrimental effects on the analysis and

the reliability of the results. Outliers are data points that deviate substantially from the overall

pattern or trend observed in the data, and their presence can lead to biased parameter estimates,

inflated standard errors, distorted confidence and prediction intervals, violation of assumptions,

and masking of underlying patterns.

Specifically, they can greatly impact the estimation of the slope and intercept due to their influ-

ence on the process of minimising the sum of squared residuals. Their presence can increase the

standard errors of the regression coefficients, making it harder to detect significant relationships

between the independent and dependent variables. Furthermore, the inclusion of outliers in the

dataset can distort the calculation of confidence and prediction intervals for individual observa-

tions, preventing accurate inference and prediction. Their presence may also lead to violations of

the assumptions of linear regression, such as the normality of residuals and the constant variance

of errors (homoscedasticity). Lastly, extreme outliers can mask underlying patterns or relationships

in the data and hinder our ability to discern the true nature of the associations between variables.

3.5 R Function

The lm() function in R is used to fit linear models. It can be used to carry out simple linear

regression, multiple linear regression, and more.

The general form of the function written in R is:

lm(formula, data, .....)

where formula is a symbolic description of the model to be fitted, and data is the data frame

containing the variables. The ..... argument is used to pass additional arguments to the function

(consult ?lm). For example:

lm(y ~ x, data = df) 1
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1 You can read the statement y ~ x as “y is modelled as a function of x.”

The above statement fits a simple linear regression model with y as the dependent variable

and x as the independent variable. The data frame df contains the variables named x and y.

3.6 Example: The Penguin Dataset

The following example workflow uses the penguin dataset from the palmerpenguins package

to demonstrate how to perform a simple linear regression in R. The data are in Table 3.1.

Although we can also do a correlation here, we will use a simple linear regression because

we want to develop a predictive model that can be used to estimate the bill length of Adelie

penguins based on their body mass—this is a permissible application of a simple linear regression

even though the two variables are not assumed to be causally related.

Table 3.1: Size measurements for adult foraging Adelie penguins near Palmer Station, Antarctica.

Bill length (mm) Body mass (g)

39.1 3750

39.5 3800

40.3 3250

36.7 3450

39.3 3650

38.9 3625

3.6.1 Do an Exploratory Data Analysis (EDA)

dim(Adelie)

> [1] 151 8

summary(Adelie)

> species island bill_length_mm bill_depth_mm

> Adelie :151 Biscoe :44 Min. :32.10 Min. :15.50

> Chinstrap: 0 Dream :56 1st Qu.:36.75 1st Qu.:17.50

> Gentoo : 0 Torgersen:51 Median :38.80 Median :18.40

> Mean :38.79 Mean :18.35

> 3rd Qu.:40.75 3rd Qu.:19.00

> Max. :46.00 Max. :21.50

> flipper_length_mm body_mass_g sex year

> Min. :172 Min. :2850 female:73 Min. :2007

> 1st Qu.:186 1st Qu.:3350 male :73 1st Qu.:2007

> Median :190 Median :3700 NA's : 5 Median :2008

> Mean :190 Mean :3701 Mean :2008

> 3rd Qu.:195 3rd Qu.:4000 3rd Qu.:2009

> Max. :210 Max. :4775 Max. :2009
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Figure 3.1: Scatter plot of the Palmer Station Adelie penguin data with a best fit line.

We see that the dataset contains 344 observations of 8 variables. We shall focus on the

body_mass_g and bill_length_mm variables for this example. Importantly, the two variables

are continuous, which seems to satisfy the requirements for a simple linear regression. We will

also restrict this analysis to the Adelie penguins (𝑛 = 152). Is the relationship between the body
mass and bill length of the penguins linear? Let’s find out.

3.6.2 Create a Plot

Construct a scatter plot of the data and include a best fit straight line:

ggplot(Adelie,

aes(x = body_mass_g, y = bill_length_mm)) +

geom_point() +

geom_smooth(method = "lm", se = FALSE) +

labs(x = "Body mass (g)", y = "Bill length (mm)") +

theme_minimal()

Although there is some scatter in the data (Figure 3.1), there appears to be a positive relation-

ship between the body mass and bill length of the penguins. This relationship might be amenable

for modelling with a linear relationship and we shall continue to explore this.

3.6.3 State the Hypothesis

• Null Hypothesis (𝐻0): there is no relationship between the body mass of the penguins and
their bill length.

• Alternative Hypothesis (𝐻𝐴): there is a relationship between the two variables.

This can be written as:

𝐻0 ∶ 𝛽 = 0 (3.2)
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As seen above, this hypothesis concerns the slope of the regression line, 𝛽. If the slope is
zero, then there is no relationship between the two variables. Regression models also tests an

hypothesis about the intercept, 𝛼, but this is less commonly reported.

3.6.4 Fit the Model

Since the assumptions of a linear regression can only be tested after fitting the model, we first fit

the model and then test the assumptions.

mod1 <- lm(bill_length_mm ~ body_mass_g,

data = Adelie)

summary(mod1)

>

> Call:

> lm(formula = bill_length_mm ~ body_mass_g, data = Adelie)

>

> Residuals:

> Min 1Q Median 3Q Max

> -6.4208 -1.3690 0.1874 1.4825 5.6168

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 2.699e+01 1.483e+00 18.201 < 2e-16 *﯂﯂﯂

> body_mass_g 3.188e-03 3.977e-04 8.015 2.95e-13 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 2.234 on 149 degrees of freedom

> Multiple R-squared: 0.3013, Adjusted R-squared: 0.2966

> F-statistic: 64.24 on 1 and 149 DF, p-value: 2.955e-13

3.6.5 Test the Assumptions

Assumptions of normality, homoscedasticity, and linearity must be tested (Section 7.3).

We already noted that a linear model will probably be appropriate for the data (see Figure 3.1),

so we proceed with the other assumptions.

To facilitate the production of the diagnostic plots,wewill use the broom package’s augment()

function to add the residuals to the data within the original dataset (now appearing as the tidied

dataset, mod1_data). This will allow us to create the diagnostic plots more easily, and later we can

also use it to look for the presence of outliers (Section 3.6.6).

library(broom)

mod1_data <- augment(mod1)

Normality
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Figure 3.2: Diagnostics plots the linear regression, mod1, for assumption testing.

I first check the normality assumption using one of several options (Options 1-3). Here I use

the Shapiro-Wilk test, a Residual Q-Q plot, and a histogram of the residuals.

Option 1: Perform the Shapiro-Wilk test on the residuals. The Shapiro-Wilk test is useful for

detecting departures from normality in small sample sizes. The hypothesis is:

• H0: the residuals are normally distributed.

• HA: the residuals are not normally distributed.

shapiro.test(residuals(mod1))

>

> Shapiro-Wilk normality test

>

> data: residuals(mod1)

> W = 0.99613, p-value = 0.9637

The p-value is greater than 0.05, so I reject the alternative hypothesis. I conclude that the

residuals are normally distributed.

Option 2: Create a Residual Q-Q plot to visually assess the normality of the residuals:

The residuals are plotted against a theoretical normal distribution. The residuals fall along the

line without major deviations, therefore the residuals are normally distributed (Figure 3.2 A).

Option 3: Create a histogram of the residuals to visually assess the normality of the residuals:

The histogram of the residuals appears to be normally distributed (Figure 3.2 B).

Homoscedasticity
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I now examine the homoscedasticity assumption. The residuals should be approximately equal

across all values of the independent variable. There are several options.

Option 1: I will use the Breusch-Pagan test to test for homoscedasticity.

The Breusch-Pagan test is used to assess the presence of heteroscedasticity (non-constant

variance) in the residuals of a regression model.

The hypothesis is:

• H0: the residuals are homoscedastic.

• HA: the residuals are heteroscedastic.

library(lmtest)

bptest(mod1)

>

> studentized Breusch-Pagan test

>

> data: mod1

> BP = 1.6677, df = 1, p-value = 0.1966

The p-value is greater than 0.05, so I reject the alternative hypothesis. I conclude that the

residuals are homoscedastic.

Option 2: Create a plot of the residuals against the fitted values to visually assess homoscedas-

ticity:

The residuals are scattered evenly around zero from short through to long bill lengths, indicating

that the residuals have constant variance (Figure 3.2 C).

Option 3: Create a plot of the standardised residuals against the independent variable to

visually assess homoscedasticity:

The residuals are scattered evenly around zero from low through to high bill lenghts, indicating

that the residuals have constant variance (Figure 3.2 D).

Other tests for homoscedasticity include the Goldfeld-Quandt (lmtest:::gqtest) test, Lev-

ene’s test (car:::leveneTest), and others.

3.6.6 Check for outliers

How do we identify outliers in linear regression analysis? There are several approaches (see Fig-

ure 3.3):

1. Difference in Fits (DFFITS): DFFITS is a measure of the impact of each observation on

the predicted values (fitted values) of the model. It quantifies how much the predicted

values would change if an observation were removed from the analysis. DFFITS values >

Threshold = 2√
𝑝
𝑛 indicate observations that have a substantial impact on the predicted

values and may be influential or outliers. Here, 𝑝 is the number of parameters in the model
(including the intercept, i.e. 2 in a simple linear regression) and 𝑛 is the number of observa-
tions.

2. Cook’s Distance Plot: Cook’s distance is a measure of the influence of each observation

on the estimated regression coefficients. The Cook’s distance plot shows the Cook’s dis-

tance values for each observation against the row numbers (or observation numbers). Points

with large Cook’s distance values (typically greater than 4
𝑛 ) indicate observations that are

potentially influential and may have a significant impact on the regression results.
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3. Residuals vs Leverage Plot: This plot displays the standardised residuals against the lever-

age values (hat values) for each observation. Leverage values measure the influence of an

observation on the fitted values (predicted values) of the model. The plot helps identify

outliers and influential observations. Points with high leverage (typically greater than 2-3

times the average leverage) and large residuals are considered influential observations that

may warrant further investigation or potential removal from the analysis.

4. Cook’s Distance vs Lev./(1-Lev.) Plot: This plot combines information from Cook’s distance

and leverage values. The x-axis represents the leverage values divided by (1 minus the

leverage values), which is a transformation that spreads out the points for better visualisation.

The y-axis shows the Cook’s distance values. This plot helps identify influential observations

by considering both their impact on the regression coefficients (Cook’s distance) and their

influence on the fitted values (leverage). Points in the top-right corner of the plot indicate

observations that are potentially influential and may require further examination or removal.

cooksd_thresh <- 4 / nrow(mod1_data) 1

dffits_threshold <- 2 * sqrt(2 / nrow(Adelie)) 2

mod1_data <- mod1_data %>%

mutate(index = row_number(),

leverage = hatvalues(mod1),

dffits = dffits(mod1),

colour = ifelse(.cooksd > cooksd_thresh, "black", "pink"))

1 Calculate thresholds for Cook’s distance.

2 Calculate the threshold for DFFITS.

Oncewe have found them (Figure 3.4), what dowe dowith outliers? There are a few strategies:

1. Remove them: If the outliers are due to data entry errors or other issues, it may be appro-

priate to remove them from the analysis. However, this should be done with caution, as

outliers may be functionally important in the dataset if they represent rare, extreme events.

2. Robust regression methods:When there is certainty that the outliers are part of the ob-

served response and represent extreme but rare occurrences, robust regression techniques

such as M-estimation or least trimmed squares, which are less sensitive to the presence of

outliers, could be used.

3. Transformation of variables: Applying appropriate transformations (e.g., logarithmic, square

root) to the variables can sometimes reduce the impact of outliers.

3.6.7 Interpret the Results

Now that we have tested the assumptions, we can interpret the results of the model fitted in

Section 3.6.4. The slope of the regression line is 0.003188 mm/g, with a standard error of ±
0.0003977. The p-value is less than 0.001, so we reject the null hypothesis that the slope is zero.

We conclude that there is a significant relationship between the body mass of the penguins and

their bill length.
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Figure 3.3: Diagnostic plots for visual inspection of outliers in the pernguin data. A) Difference in

Fits (DFFITS) for mod1. B) Cook’s distance. C) Residuals vs. leverage. D) Cook’s distance vs. Lev./(1-

Lev.). Outliers are identified beyond the Cook’s distance threshold (4/n) and are plotted in black

and their row numbers in dark red. The vertical dashed blue lines in C) and D) are positioned at 2

times the average leverage. The horizontal red dashed lines in B) and D) are located at the Cook’s

distance threshold. A) to C) are custom ggplot2 plots corresponding to plot(mod1, which =

c(4, 5, 6)).

The fit of the model is given by the multiple 𝑅2 value, which is 0.3013. This means that 30.13%
of the variation in bill length can be explained by body mass. The remaining ~70% is due to other

factors not included in the model. The intercept of the model is 26.99 mm, with a standard error of

± 0.0003977. The intercept is the value of the dependent variable when the independent variable
is zero. In this case, it is the bill length of a penguin with a body mass of zero grams, which is not

a meaningful value.

The significance of the overall fit of the model can be assessed using an analysis of variance

(ANOVA) test. The p-value is less than 0.001, so we reject the null hypothesis that the model does

not explain a significant amount of the variation in the data against an F-value of 64.25 on 1 and

149 degrees of freedom. We conclude that the model is a good fit for the data.

3.6.8 Reporting

I provide example Methods, Results, and Discussion sections in a format more-or-less suited for

inclusion in a scientific manuscript. Feel free to use it as a template and edit it as necessary to

describe your study.

Methods
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Figure 3.4: Plot of the linear regression resulting from mod1 with the outliers identified using

Cook’s distance highlighted.

Study data

The data analysed in this study were derived from the Palmer Penguins dataset, a compre-

hensive collection of measurements from three penguin species (Adelie, Chinstrap, and Gentoo)

collected in the Palmer Archipelago, Antarctica. The dataset includes variables species, island, bill

length, bill depth, flipper length, body mass, and sex of the penguins. This dataset has been made

publicly available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of

the Long Term Ecological Research Network.

Statistical analysis

The primary objective of our statistical analysis was to investigate the relationship between

the penguins’ body mass and bill length. For this purpose, we employed a simple linear regression

model to quantify the extent to which the independent variable predicts bill length.

We fitted a simple linear regression model using the lm() function in R version 4.4.0 (R Core

Team, 2024). The model included bill length as the dependent variable, and body mass as continu-

ous predictor. We ensured all assumptions for linear regression were assessed including linearity,

independence, homoscedasticity, and normality of residuals.

After fitting the model, diagnostic plots were generated using the plot() function in R to visu-

ally assess the residuals for any patterns indicating potential violations of regression assumptions.

Additionally, the Shapiro-Wilk test was conducted to confirm the normality of the residuals. The

presence of heteroscedasticity was evaluated using the Breusch-Pagan test.

The adequacy of the model fit was judged based on the coefficient of determination (R2), which

provided insight into the variance in body mass explained by the predictors. The significance of

the regression coefficients was determined using t-tests, and the overall model fit was evaluated

by an F-test.

Results

The regression coefficient for bill length with respect to body mass was estimated to be ap-

proximately 3.2 × 10−3 mm/g ± 3.977 × 10−4 (mean slope ± SE) (𝑝 < 0.001, 𝑡 = 8.015), indicating a
significant dependence of bill length on body mass (Figure 3.5).

The multiple 𝑅2 value of the model was 0.3013, suggesting that approximately 30.13% of the
variability in bill length can be accounted for by changes in bodymass. This indicates that while bill

length variation is notably influenced by body mass, about 69.87% of the variation is attributable
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Figure 3.5: Plot of bill length as a function of bodymass forAdelie penguins sampled at the Palmer

Station. The straight line indicates the best fit regression line and the blue shading is the 95%

confidence interval.

to other factors not included in the model.

The overall fit of the model, assessed by an ANOVA, strongly supported the model’s validity

(𝐹 = 64.25, 𝑝 < 0.001, d.f. = 1, 149) and confirms that a linear model provides adequate support
for predicting penguin bill length from body mass.

Discussion

In conclusion, the statistical analysis confirms a significant relationship between body mass

and bill length in penguins. Although the model explains a substantial portion of the variation,

future studies should consider additional variables that could account for the remaining variability

in bill length. This would enhance our understanding of the morphological adaptations of penguins

in their natural habitat.

3.7 Confidence and Prediction Intervals

Confidence intervals estimate the range within which the true mean of the dependent variable

(𝑌) is likely to fall for a given value of the independent variable (𝑋). In other words, if you were to
repeat your experiment many times and calculate the mean response at a specific 𝑋 value each
time, the confidence interval would contain the true population mean a certain percentage of the

time (e.g., 95%). Therefore, a 95% confidence interval means you can be 95% confident that the

interval contains the true mean response for the population at that particular 𝑋 value. It’s about
the average, not individual data points.

Prediction intervals, on the other hand, provide a range of 𝑌 values that are likely to contain a
single new observation of the dependent variable for a given value of the independent variable

𝑋. These intervals account for the variability around individual observations and are generally
wider than confidence intervals because they include both the variability of the estimated mean

response and the variability of individual observations around that mean. Continuing with the

Adelie penguin data, the confidence and prediction intervals are shown in Figure 3.6.
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Figure 3.6: Plot of pernguin data with the confidence interval (blue) and prediction interval (pink)

around the fitted values.

# Predict values with confidence intervals

pred_conf <- as.data.frame(predict(mod1,

newdata = Adelie,

interval = "confidence"))

# Predict values with prediction intervals

pred_pred <- as.data.frame(predict(mod1,

newdata = Adelie,

interval = "prediction"))

# Add body mass to the data frame

results <- cbind(Adelie, pred_conf, pred_pred[,2:3])

# Rename columns for clarity

names(results)[c(9:13)] <- c("fit", "lwr_conf", "upr_conf",

"lwr_pred", "upr_pred")

ggplot(data = results, aes(x = body_mass_g, y = fit)) +

geom_line(linewidth = 0.4, colour = "red") +

geom_ribbon(aes(ymin = lwr_pred, ymax = upr_pred),

alpha = 0.2, fill = "red") +

geom_ribbon(aes(ymin = lwr_conf, ymax = upr_conf),

alpha = 0.2, fill = "blue") +

geom_point(aes(y = bill_length_mm), shape = 1) +

labs(x = "Body mass (g)", y = "Bill length (mm)") +

theme_bw()

Confidence and prediction intervals are relevant for understanding the uncertainty associated

with a linear regression model’s predictions. While confidence intervals focus on quantifying the
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uncertainty around the estimated mean response, prediction intervals comprehensively assess the

variability that can be expected for individual observations. We can use both when interpreting

the results of a linear regression analysis.

Confidence intervals are useful when the primary interest lies in making inferences about the

mean response at specific values of the independent variable(s). For instance, in a study examining

the relationship between soil nutrient levels and plant biomass, confidence intervals can help

determine the range of mean biomass that can be expected for a given level of soil nutrients.

This information may be valuable for crop management practices, such as designing fertilisation

strategies or assessing the impact of nutrient depletion on plant productivity.

Prediction intervals, on the other hand, are more relevant when the goal is to predict the

value of an individual observation or to assess the range of values that future observations might

take. For example, in a study investigating the relationship between ambient temperature and

the growth rate of a species of fish, prediction intervals provide a range of growth rates that an

individual fish might exhibit based on the observed temperature. This information is invaluable in

aquaculture, for instance, where predicting individual growth patterns can inform decisions about

optimal stocking densities or feed management strategies.

The relative widths of confidence and prediction intervals can provide insights into the variabil-

ity in the data. If the prediction intervals are substantially wider than the confidence intervals, it

may indicate a high level of variability in individual observations around the mean response, which

could suggest the presence of influential factors or sources of variation that are not accounted

for by the current model, such as microhabitat differences or genetic variation within the studied

population.

3.8 What Do I DoWhen Some Assumptions Fail?

3.8.1 Failing Assumptions of Normality and Homoscedasticity

I will use the sparrow data from Zar (1999) to demonstrate what to do when the assumptions of

normality and homoscedasticity are violated. I will fit a linear model to the data and then check

the assumptions.

Figure 3.7 is a scatter plot of the sparrow data with a best fit line. At first glance, the linear

model seems to almost perfectly describe the relationship of wing length on age. I will fit a linear

model to the data and then check the assumptions.

mod2 <- lm(wing ~ age, data = sparrows)

summary(mod2)

>

> Call:

> lm(formula = wing ~ age, data = sparrows)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.30699 -0.21538 0.06553 0.16324 0.22507

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.71309 0.14790 4.821 0.000535 *﯂﯂﯂



44 CHAPTER 3. LINEAR REGRESSION

2

3

4

5

5 10 15
Age (days)

W
in

g 
le

ng
th

 (
cm

)

Figure 3.7: Scatter plot of the sparrow dataset with a best fit line.

> age 0.27023 0.01349 20.027 5.27e-10 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.2184 on 11 degrees of freedom

> Multiple R-squared: 0.9733, Adjusted R-squared: 0.9709

> F-statistic: 401.1 on 1 and 11 DF, p-value: 5.267e-10

Check the assumption of normality of residuals using the Shapiro-Wilk test, a histogram, and

a residual Q-Q plot.

shapiro.test(residuals(mod2))

>

> Shapiro-Wilk normality test

>

> data: residuals(mod2)

> W = 0.84542, p-value = 0.02487

The p-value for the Shapiro-Wilk test is < 0.05, indicating that the residuals are not normally

distributed. The histogram and Q-Q plot of the residuals also show that the residuals are not

normally distributed (Figure 3.8 and Figure 3.9). In the Residual Q-Q plot, the points deviate from

the straight line, indicating non-normality—note the S-shaped curvature to the data.

hist(residuals(mod2))

plot(mod2, which = 2)

It is enough to know that the normality assumption is not met – I cannot proceedwith a simple
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Figure 3.8: A histogram of the residual of the linear regression, mod2.
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Figure 3.9: A Residual Q-Q plot of the linear regression, mod2.

linear regression. However, let us for completeness also look at the homoscedasticity assumption.

I will use the Breusch-Pagan test to check for homoscedasticity, followed by a plot of residuals

against fitted values.

bptest(mod2)

>

> studentized Breusch-Pagan test

>

> data: mod2

> BP = 1.6349, df = 1, p-value = 0.201

The p-value for the Breusch-Pagan test is > 0.05, indicating that the residuals are homoscedas-

tic. The plot of residuals against fitted values shows gives a slightly different impression (Fig-

ure 3.10).
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Figure 3.10: A plot of residuals against fitted values for the linear regression, mod2.

plot(mod2, which = 1)

The assumptions of normality and homoscedasticity are violated (it is sufficient that one or

the other fails, not both). As already noted, I cannot proceed with the linear model. I will need to

consider alternative models or transformations to address these issues.

When the assumptions of normality and homoscedasticity are violated, I have some options—

these broadly group into transforming the data and using a non-parametric test.

Transforming the data can sometimes help attain normality and homoscedasticity. Common

transformations include the logarithmic, square root, and inverse transformations. However, be

cautious when interpreting the results of transformed data, as the transformed coefficients may

not be directly interpretable.

I will show the Theil-Sen estimator (also known as Sen’s slope estimator) as a robust non-

parametric replacement for a simple linear model. It calculates the median of the slopes of all pairs

of sample points to determine the overall slope of the line.

library(mblm)

mod3 <- mblm(wing ~ age, data = sparrows)

summary(mod3)

>

> Call:

> mblm(formula = wing ~ age, dataframe = sparrows)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.44524 -0.31190 -0.00714 0.06905 0.14048

>

> Coefficients:

> Estimate MAD V value Pr(>|V|)

> (Intercept) 0.75000 0.18532 91 0.000244 *﯂﯂﯂

> age 0.27619 0.00956 91 0.000244 *﯂﯂﯂

> ---
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> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.244 on 11 degrees of freedom

The interpretation of the Theil-Sen estimator is similar to the simple linear regression. The

Theil-Sen estimator provides a robust estimate of the slope of the relationship between age and

wing length. The slope of the line is 0.28 (± 0.19 mean absolute deviation) (V value = 91, p <
0.001), indicating that for each additional day of age, the wing length increases by 0.28 cm. The

intercept of the line is 0.75, indicating that the wing length is ~0.8 cm when the age is 0 days.

3.8.2 My Data Do Not Display a Linear Response

In simple linear regression, the dependent variable 𝑌 is expected to exhibit a straight-line relation-
ship with the independent variable 𝑋. However, several factors can cause deviations from a linear
pattern.

Statistical assumptions underlying linear regression can affect the appearance of a linear re-

sponse. The normality assumption is important but primarily pertains to the residuals rather than

the 𝑌 vs. 𝑋 plot. A scatterplot of 𝑌 vs. 𝑋might deviate from a linear pattern due to the non-normality
of the residuals or heteroscedasticity, where the variability of the residuals changes with the level

of 𝑋. Addressing these issues and then reassessing the linearity of the relationship is a logical first
step. Refer to Section 3.8 for more details on how to proceed.

Outliers in the data can significantly impact the regression line, leading to misleading results

(Section 3.6.6). Measurement errors in the independent variable can also lead to biased and incon-

sistent estimations, which may require revisiting the data collection process to address systemic

problems. Variable bias, where excluding relevant variables distorts the observed relationship,

could also explain seemingly nonlinear responses. Considering multiple predictor variables in a

regression model (Chapter 5) might be more appropriate in such situations.

It’s important to note that simple linear regression might not be suitable for all scenarios. For

instance, the dependent variable 𝑌might inherently follow a different probability distribution, such
as a Poisson or a binomial distribution, rather than a normal distribution. This is particularly relevant

in count data or binary outcome scenarios. In such cases, other types of models like Poisson

regression or logistic regression, accommodated by generalised linear models (GLM; Chapter 6),

would be more appropriate.

Lastly, if the data do not exhibit a linear relationship even after addressing these issues, the

relationship between the variables may really be nonlinear. This can occur when the underly-

ing functional relationship between 𝑋 and 𝑌 is better described by exponential, logarithmic, or
other more complex mechanistic responses. In such cases, nonlinear regression (Chapter 7) or

generalised additive models (GAM; Chapter 11) might be necessary to describe the relationship

between the variables accurately.
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Chapter 4

Polynomial Regression

Polynomial regressions may resemble non-linear regression in terms of the visual appearance of

the regression line (i.e. with bends and curves), but they handle non-linearity by transforming the

independent variable 𝑋 into higher powers (e.g., 𝑋2, 𝑋3), which are then included in the model
along with coefficients that are linear in terms of estimation. For instance, a cubic (of order, degree,

or power 3; denoted as 𝑚) polynomial regression model (Figure 7.1 A) and is expressed as:

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2𝑋
2
𝑖 + 𝛽3𝑋

3
𝑖 + 𝜖𝑖 (4.1)

Where:

• 𝑌𝑖 is the response variable for the 𝑖-th observation,
• 𝑋𝑖 is the predictor variable for the 𝑖-th observation,
• 𝛼 is the intercept,
• 𝛽1, 𝛽2, and 𝛽3 are the coefficients for the linear, quadratic, and cubic terms, respectively, and
• 𝜖𝑖 is the error term for the 𝑖-th observation (the residuals).

It is worth noting that higher order polynomials can lead to overfitting, where the model cap-

tures the noise in the data rather than the inherent pattern. This can result in poor generalisation

to new data and poor predictive performance. Overfitting becomes more likely as 𝑚 increases.
The𝑚 of a polynomial should not exceed 𝑛−1, where 𝑛 is the number of data points. An𝑚 greater
than 4 or 5 is rarely justified.1 If𝑚 = 𝑛−1, the polynomial will fit the data perfectly (i.e., 𝑅2 = 1). For
example, a linear regression (𝑚 = 1) fits two data points exactly, a quadratic regression (𝑚 = 2) fits
three data points perfectly, and so on. Therefore, always consider the trade-off between model

complexity and generalisation when using polynomial regression.

Another complication is that the biological interpretation of more complex (higher order) mod-

els may be lacking. However, polynomial regression are more often than not used for prediction

rather than their interpretability.

<THE REST OF THIS CHAPTER IS TO BE DEVELOPED.>

1The appropriate maximum𝑚 can be determined using methods such as the backward-elimination or forward-selection
multiple-regression procedure.

49
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Chapter 5

Multiple Linear Regression

In Section 3.1 we have seen how to model the relationship between two variables using simple

linear regression (SLR). However, in ecosystems, the relationship between the response variable

and the explanatoryvariables ismore complex and inmanycases cannot be adequately captured by

a single driver (i.e. influential or predictor variable). In such cases, multiple linear regression (MLR)

can be used to model the relationship between the response variable and multiple explanatory

variables.

5.1 Multiple Linear Regression

Multiple linear regression helps us answer questions such as:

• How do various environmental factors influence the population size of a species? Factors

like average temperature, precipitation levels, and habitat area can be used to predict the

population size of a species in a given region. Which of these factors are most important in

determining the population size?

• What are the determinants of plant growth in different ecosystems? Variables such as soil

nutrient content, water availability, and light exposure can help predict the growth rate of

plants in various ecosystems. How do these factors interact to influence plant growth?

• How do genetic and environmental factors affect the spread of a disease in a population?

The incidence of a disease might depend on factors like genetic susceptibility, exposure

to pathogens, and environmental conditions (e.g., humidity and temperature). What is the

relative importance of these factors in determining the spread of the disease?

Multiple linear regression extends the simple linear regression model to include several inde-

pendent variables. The model is expressed as:

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖 (5.1)

Where:

• 𝑌𝑖 is the response variable for the 𝑖-th observation,
• 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘 are the 𝑘 predictor variables for the 𝑖-th observation,
• 𝛼 is the intercept,
• 𝛽1, 𝛽2, … , 𝛽𝑘 are the coefficients for the 𝑘 predictor variables, and
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• 𝜖𝑖 is the error term for the 𝑖-th observation (the residuals).

When including a categorical variable in a multiple linear regression model, dummy (indicator)

variables are used to represent the different levels of the categorical variable. Let’s assume we

have a categorical variable 𝐶 with three levels: 𝐶1, 𝐶2, and 𝐶3. We can represent this categorical
variable using two dummy variables:

• 𝐷1: Equals 1 if 𝐶 = 𝐶2, 0 otherwise.
• 𝐷2: Equals 1 if 𝐶 = 𝐶3, 0 otherwise.

𝐶1 is considered the reference category and does not get a dummy variable. This way, we
avoid multicollinearity (see Section 5.6.4). R’s lm() function will automatically convert the cate-

gorical variables to dummy variables (sometimes called treatment coding). The first level of the

alphabetically sorted categorical variable is taken as the reference level. See Section 8.5 for more

information about how to include categorical variables in a multiple linear regression model. At

the end of the chapter you’ll find alternative ways to assess categorical variables in a multiple

linear regression model (Section 5.9).

Assumewe also have 𝑘 continuous predictors𝑋1, 𝑋2, … , 𝑋𝑘. Themultiple linear regressionmodel
with these predictors and the categorical variable can be expressed as:

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘 + 𝛾1𝐷𝑖1 + 𝛾2𝐷𝑖2 + 𝜖𝑖 (5.2)

Where:

• 𝑌𝑖 is the dependent variable for observation 𝑖.
• 𝛼 is the intercept term.
• 𝛽1, 𝛽2, … , 𝛽𝑘 are the coefficients for the continuous independent variables 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘.
• 𝐷𝑖1 and 𝐷𝑖2 are the dummy variables for the categorical predictor 𝐶.
• 𝛾1 and 𝛾2 are the coefficients for the dummy variables, representing the effect of levels 𝐶2
and 𝐶3 relative to the reference level 𝐶1.

• 𝜖𝑖 is the error term for observation 𝑖.

5.2 Nature of the Data

You are referred to the discussion in simple linear regression (Section 3.1). The only added consider-

ation is that the data should be multivariate, i.e., it should contain more than one predictor variable.

The predictor variables are generally continuous, but there may also be categorical variables.

5.3 Assumptions

Basically, this is as already discussed in simple linear regression (Section 3.1)—in multiple linear

regression, the same assumptions apply to the response relative to each of the predictor variables.

In Section 5.6.7 I will assess the assumptions in an example dataset. An additional considera-

tion is that the predictors must not be highly correlated with each other (multicollinearity) (see

Section 5.6.4).
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5.4 Outliers

Again, this is as discussed in simple linear regression (Section 3.1). In multiple linear regression,

the same considerations apply to the response relative to each of the predictor variables.

5.5 R Function

The lm() function in R is used to fit a multiple linear regression model. The syntax is similar to

that of the lm() function used for simple linear regression, but with multiple predictor variables.

The function takes the basic form:

lm(formula, data)

For a multiple linear regression with only continuous predictor variables (as in Equation 5.1),

the formula is:

lm(response ~ predictor1 + predictor2 + ..... + predictorN,

data = dataset)

Interaction effects are implemented by including the product of two variables in the formula.

For example, to include an interaction between predictor1 and predictor2, we can use:

lm(response ~ predictor1 * predictor2, data = dataset)

Whenwe have both continuous and categorical predictor variables (Equation 5.2), the formula

is:

lm(response ~ continuous_predictor1 + continuous_predictor2 + .....

+ continuous_predictorN + factor(categorical_predictor1) +

factor(categorical_predictor2) + .....

+ factor(categorical_predictorM),

data = dataset)

5.6 Example 1: The Seaweed Dataset

Load some data produced in the analysis by Smit et al. (2017). Please refer to the chapter Deep

Dive into Gradients on Tangled Bank for the data description.

This dataset is suitable for a multiple linear regression because it has continuous response

variables (𝛽sør, 𝛽sim, and 𝛽sne, the Sørenesen dissimilarity, the turnover component of 𝛽-diversity,
and the nestedness-resultant component of 𝛽-diversity, respectively), continuous predictor vari-
ables (the mean climatological temperature for August, the mean climatological temperature for

the year, the temperature range for February and August, and the SD of February and August),

and a categorical variable (the bioregional classification of the samples).

https://tangledbank.netlify.app/data/seaweed/spp_df2.csv
https://tangledbank.netlify.app/BCB743/06-deep_dive.html
https://tangledbank.netlify.app/BCB743/06-deep_dive.html
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sw <- read.csv("data/spp_df2.csv")

rbind(head(sw, 3), tail(sw, 3))[,-1]

> dist bio augMean febRange febSD augSD annMean

> 1 0.000 BMP 0.00000000 0.00000000 0.00000000 0.0000000 0.00000000

> 2 51.138 BMP 0.05741369 0.09884404 0.16295271 0.3132800 0.01501846

> 3 104.443 BMP 0.15043904 0.34887754 0.09934163 0.4188239 0.02602247

> 968 102.649 ECTZ 0.41496099 0.11330069 0.24304493 0.7538546 0.52278161

> 969 49.912 ECTZ 0.17194242 0.05756093 0.18196664 0.3604341 0.24445006

> 970 0.000 ECTZ 0.00000000 0.00000000 0.00000000 0.0000000 0.00000000

> Y Y1 Y2

> 1 0.000000000 0.0000000 0.000000000

> 2 0.003610108 0.0000000 0.003610108

> 3 0.003610108 0.0000000 0.003610108

> 968 0.198728140 0.1948882 0.003839961

> 969 0.069337442 0.0443038 0.025033645

> 970 0.000000000 0.0000000 0.000000000

Wewill do a multiple linear regression analysis to understand the relationship between some

of the environmental variables and the seaweed species. Specifically, wewill consider only the vari-

ables augMean, febRange, febSD, augSD, and annMean as predictors of the species composition

as measured by 𝛽sør (Y in the data file).
The model, which we will call full_mod1 below, can be stated formally as Equation 5.3:

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜖 (5.3)

Where:

• 𝑌 is the response variable, the mean Sørensen dissimilarity,
• the predictors 𝑋1, 𝑋2, 𝑋3, 𝑋4, and 𝑋5 correspond to augMean, febRange, febSD, augSD, and
annMean, respectively, and

• 𝜖 is the error term.

But before we jump into multiple linear regression, let’s warm up by first fitting some simple

linear regressions.

5.6.1 Simple Linear Models

For interest sake, let’s fit simple linear models for each of the predictors against the response

variable. Let’s look at relationships between the continuous predictors and the response in the

East Coast Transition Zone (ECTZ), ignoring the other bioregions for now. We will first fit the

simple linear models and then create scatter plots of the response variable 𝛽sør against each of
the predictor variables. To these plots, we will add a best fit (regression) lines.

sw_ectz <- sw ||> filter(bio === "ECTZ")

predictors <- c("augMean", "febRange", "febSD", "augSD", "annMean")

# Fit models using purrr:::map and store in a list
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models <- map(predictors, ~ lm(as.formula(paste("Y ~", .x)),

data = sw_ectz))

names(models) <- predictors

model_summaries <- map(models, summary)

model_summaries

> $augMean

>

> Call:

> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.180961 -0.059317 -0.008346 0.045695 0.192444

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.060104 0.007359 8.168 1.01e-14 *﯂﯂﯂

> augMean 0.346011 0.010899 31.748 < 2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.07721 on 287 degrees of freedom

> Multiple R-squared: 0.7784, Adjusted R-squared: 0.7776

> F-statistic: 1008 on 1 and 287 DF, p-value: < 2.2e-16

>

>

> $febRange

>

> Call:

> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.21744 -0.08311 -0.01543 0.07536 0.25699

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.092722 0.009638 9.621 <2e-16 *﯂﯂﯂

> febRange 0.181546 0.008897 20.405 <2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.1048 on 287 degrees of freedom

> Multiple R-squared: 0.592, Adjusted R-squared: 0.5905

> F-statistic: 416.4 on 1 and 287 DF, p-value: < 2.2e-16
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>

>

> $febSD

>

> Call:

> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.24267 -0.10709 -0.02587 0.08888 0.39171

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.12018 0.01168 10.29 <2e-16 *﯂﯂﯂

> febSD 0.17166 0.01245 13.79 <2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.1272 on 287 degrees of freedom

> Multiple R-squared: 0.3985, Adjusted R-squared: 0.3964

> F-statistic: 190.1 on 1 and 287 DF, p-value: < 2.2e-16

>

>

> $augSD

>

> Call:

> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.307683 -0.111051 -0.003922 0.086322 0.308041

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.12781 0.01231 10.38 <2e-16 *﯂﯂﯂

> augSD 0.08793 0.00720 12.21 <2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.133 on 287 degrees of freedom

> Multiple R-squared: 0.3419, Adjusted R-squared: 0.3396

> F-statistic: 149.1 on 1 and 287 DF, p-value: < 2.2e-16

>

>

> $annMean

>

> Call:
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> lm(formula = as.formula(paste("Y ~", .x)), data = sw_ectz)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.144251 -0.051607 -0.005023 0.045095 0.145173

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.053883 0.006309 8.541 7.94e-16 *﯂﯂﯂

> annMean 0.332150 0.008667 38.325 < 2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.0663 on 287 degrees of freedom

> Multiple R-squared: 0.8365, Adjusted R-squared: 0.836

> F-statistic: 1469 on 1 and 287 DF, p-value: < 2.2e-16

The individual models show that, for each predictor, the estimate of the coefficients (for slope)

and the test for the overall hypothesis are both significant (𝑝 < 0.05 in all cases; refer to the model
output). All the predictor variables are therefore good predictors of the structure of seaweed

species composition along.

# Create individual plots for each predictor

plts1 <- map(predictors, function(predictor) {

ggplot(sw_ectz, aes_string(x = predictor, y = "Y")) +

geom_point(shape = 1, colour = "dodgerblue4") +

geom_smooth(method = "lm", col = "magenta", fill = "pink") +

labs(title = paste("Y vs", predictor),

x = predictor,

y = "Y") +

theme_bw()

})

# Name the list elements for easy reference

names(plts1) <- predictors

ggpubr:::ggarrange(plotlist = plts1, ncol = 2,

nrow = 3, labels = "AUTO")

Figure 5.1 is a series of scatter plots showing the relationship between the response variable

𝛽sør and each of the predictor variables. The blue line represents the linear regression fitted to the
data. We see that the relationship between the response variable and each of the predictors is

positive and linear. Each of the models are significant, as indicated by the 𝑝-values in the model
summaries. These simplemodels do not tell us howsomepredictorsmight act together to influence

the response variable.

To consider combined effects and interactions between predictor variables, we must explore

multiple linear regression models that include all the predictors. Multiple regression will give us a

more integrated understanding of how various environmental variables jointly influence species
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Figure 5.1: Individual simple linear regressions fitted to the variables augMean, febRange, febSD,

augSD, and annMean as predictors of the seaweed species composition as measured by the

Sørensen dissimilarity, Y.

composition along the coast. In doing so, we can control for confounding variables, improve model

fit, deal with multicollinearity, test for interaction effects, and enhance predictive power.

We will fit this multiple regression model next.

5.6.2 State the Hypotheses for a Multiple Linear Regression

As with all inferential statistics, we need to consider the hypotheses when performing multiple

linear regression.

The null hypothesis (𝐻0) states that there is no significant relationship between the Sørensen
diversity index and any of the the climatological variables entered into the model, implying that

the coefficients for all predictors are equal to zero. The alternative hypothesis (𝐻𝐴), on the other
hand, states that there is a significant relationship between the Sørensen diversity index and the

climatological variables, positing that at least one of the coefficients is not equal to zero.

The hypotheses can be divided into two kinds: those dealing with the main effects and the

one assessing the overall model stated in Equation 5.3.

Main effects hypotheses

The main effects hypotheses test, for each predictor, 𝑋𝑖, if the predictor has a significant effect
on the response variable 𝑌.

𝐻0: There is no linear relationship between the environmental variables (augMean, febRange,
febSD, augSD, and annMean) and the community composition as measured by 𝛽sør (in Y). Formally,
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for each predictor variable 𝑋𝑖:

• 𝐻0 ∶ 𝛽𝑖 = 0 for 𝑖 = 1, 2, 3, 4, 5

Where 𝛽𝑖 are the coefficients of the predictors in the multiple linear regression model.
𝐻𝐴: There is a linear relationship between the environmental variables (augMean, febRange,

febSD, augSD, and annMean) and the species composition as measured by 𝛽sør:

• 𝐻𝐴 ∶ 𝛽𝑖 ≠ 0 for 𝑖 = 1, 2, 3, 4, 5

Overall hypothesis

In addition to testing the individual predictors, 𝑋𝑖, we can also test a hypothesis about the
overall significance of the model (F-test), which examines whether the model as a whole explains

a significant amount of variance in the response variable 𝑌. A significant F-test would suggest
that at least one predictor (excluding the intercept) in the model is likely to be significantly re-

lated to the response, but it requires further investigation of individual predictors and potential

multicollinearity to fully understand the relationships. For the overall model hypothesis:

Null Hypothesis (𝐻0):

• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 0

Alternative Hypothesis (𝐻𝐴):

• 𝐻𝐴 ∶ ∃ 𝛽𝑖 ≠ 0 for at least one 𝑖

5.6.3 Fit the Model

We fit two models:

• a full model that includes an intercept term and the five environmental variables, and

• a null model that includes only an intercept term.

The reason the null model is included is to compare the full model with a model that has no

predictors. This comparison will help us determine which of the predictors are useful in explaining

the response variable—we will see this in action in the forward model selection process later on

(Section 5.6.5).

# Select only the variables that will be used in model building

sw_sub1 <- sw_ectz[, c("Y", "augMean", "febRange",

"febSD", "augSD", "annMean")]

# Fit the full and null models

full_mod1 <- lm(Y ~ augMean + febRange + febSD +

augSD + annMean, data = sw_sub1)

null_mod1 <- lm(Y ~ 1, data = sw_sub1)

# Add fitted values from the full model to the dataframe

sw_ectz$.fitted <- fitted(full_mod1)
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5.6.4 Dealing With Multicollinearity

Some of the predictor variables may be correlated with each other and this can lead to multi-

collinearity. When predictor variables are highly correlated, the model may not be able to dis-

tinguish the individual effects of each predictor. Consequently, the model becomes less precise

and harder to interpret due to the coefficients’ inflated standard errors (Graham (2003)). One can

create a plot of pairwise correlations to visually inspect the correlation structure of the predictors.

I’ll not do this here, but you can try it on your own.

A formal way to detect multicollinearity is to calculate the variance inflation factor (VIF) for

each predictor variable. The VIF measures how much the variance of the estimated regression

coefficients is increased due to multicollinearity. A VIF value greater than 5 or 10 indicates a

problematic amount of multicollinearity.

initial_formula <- as.formula("Y ~ .")

threshold <- 10 # Define a threshold for VIF values

# Extract the names of the predictor variables

predictors <- names(vif(full_mod1))

# Iteratively remove collinear variables

while (TRUE) {

# Calculate VIF values

vif_values <- vif(full_mod1)

print(vif_values) # Print VIF values for debugging

max_vif <- max(vif_values)

# Check if the maximum VIF is above the threshold

if (max_vif > threshold) {

# Find the variable with the highest VIF

high_vif_var <- names(which.max(vif_values))

cat("Removing variable:",

high_vif_var,

"with VIF:",

max_vif,

"\n")

# Update the formula to exclude the high VIF variable

updated_formula <- as.formula(paste("Y ~ . -", high_vif_var))

# Refit the model without the high VIF variable

full_mod1 <- lm(updated_formula, data = sw_sub1)

# Update the environment data frame to reflect the removal

sw_sub1 <- sw_sub1[, !(names(sw_sub1) %in% high_vif_var)]

} else {

break

}
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}

> augMean febRange febSD augSD annMean

> 27.947767 10.806635 8.765732 2.497739 31.061900

> Removing variable: annMean with VIF: 31.0619

> augMean febRange febSD augSD

> 2.290171 10.648752 8.637679 1.616390

> Removing variable: febRange with VIF: 10.64875

> augMean febSD augSD

> 1.423601 1.674397 1.585055

Regularisation techniques such as ridge regression, lasso regression, or elastic net can also

be used to deal with multicollinearity. These advanced techniques add a penalty term to the

regression model that shrinks the coefficients towards zero, which can help to reduce the impact

of multicollinearity. However, these techniques are not covered in this guide. Please refer to

Chapter 8 for more information on regularisation techniques.

5.6.5 Perform Forward Selection

It might be that not all of the variables included in the full model are necessary to explain the

response variable. We can use a stepwise regression to select the best combination (subset) of

predictors that best explains the response variable. To do this, we will use the stepAIC function

that lives in the MASS package.

stepAIC() works by starting with the null model and then adding predictors one by one,

selecting the one that improves the model the most as seen in the reduction of the AIC values

along theway. This process continues until no more predictors can be added to improve the model

(i.e. to further reduce the AIC). Progress is tracked as the function runs.

# Perform forward selection

mod1 <- stepAIC(null_mod1,

scope = list(lower = null_mod1, upper = full_mod1),

direction = "forward")

> Start: AIC=-1044.97

> Y ~ 1

>

> Df Sum of Sq RSS AIC

> + augMean 1 6.0084 1.7108 -1478.4

> + febSD 1 3.0759 4.6433 -1189.9

> + augSD 1 2.6394 5.0797 -1163.9

> <none> 7.7192 -1045.0

>

> Step: AIC=-1478.41

> Y ~ augMean

>

> Df Sum of Sq RSS AIC

> + febSD 1 0.36036 1.3504 -1544.8

> + augSD 1 0.31243 1.3984 -1534.7

> <none> 1.7108 -1478.4
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>

> Step: AIC=-1544.77

> Y ~ augMean + febSD

>

> Df Sum of Sq RSS AIC

> + augSD 1 0.10568 1.2448 -1566.3

> <none> 1.3504 -1544.8

>

> Step: AIC=-1566.32

> Y ~ augMean + febSD + augSD

The model selection process shows that as we add more variables to the model, the AIC value

decreases. We can infer from this that the multiple regression model provides a better fit that

simple linear models that use the variables in isolation.

We also see that stepAIC() has not removed any variables from the full model. Probably one

reason for failing to remove any variables is that the VIF process has already accomplished this

by virtue of dealing with multicollinearity. This means that all the variables retained in mod1 are

important in explaining the response variable.

5.6.6 Added-Variable Plots (Partial Regression Plots)

Before looking at the output in more detail, I’ll introduce partial regression plots as a means to

examine the relationship between the response variable and each predictor variable. Although

they can be calculated by hand, the car package provides a convenient function, avPlots(), to

create these plots.

Addedvariable plots are also sometimes called ‘partial regression plots’ or ‘individual coefficient

plots.’ They are used to display the relationship between a response variable and an individual pre-

dictor variable while accounting for the effect of other predictor variables in a multiple regression

model (the marginal effect).

# Create partial regression plots

avPlots(mod1, col = "dodgerblue4", col.lines = "magenta")

What insights can we draw from the added-variable plots? Although there are better ways to

assess the model fit, we can already make some observations about the linearity of the model

or the presence of outliers. The slope of the line in an added variable plot corresponds to the

regression coefficient for that predictor in the full multiple regression model. Seen in this way, it

visually indicates the magnitude and direction of each predictor’s effect. In Figure 5.2, the added-

variable plot for augMean shows a tighter clustering of points around the regression line and a

strong linear relationship (steep slope) with the response variable; the plots for febSD and augSD,

on the other hand, showaweaker response andmore scatter about the regression line. Importantly,

this suggests that augMean has a stronger and more unique contribution to the multiple-variable

model than the other two variables.

There are also insights to be made about possible multicollinearity using added-variable plots.

These plots are not a definitive test for multicollinearity, but they can provide some clues. Notably,

if a predictor shows a strong relationship with the response variable in a simple correlation but

appears to have little relationship in the added-variable plot, it might indicate collinearity with
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Figure 5.2: Partial regression plots for mod1 with the selected variables augMean, febSD, and

augSD.

other predictors. This discrepancy suggests that the predictor’s effect on the response is being

masked by the presence of other correlated predictors.

5.6.7 Model Diagnostics

We are back in the territory of parametric statistics, so we need to check the assumptions of the

multiple linear regression model (similar to those of simple linear regression). We can do this by

making the various diagnostic plots. all of them consider various aspects of the residuals, which

are simply the differences between the observed and predicted values.

Diagnostic plots of final model

You have been introduced to diagnostic plots in the context of simple linear regression (Sec-

tion 3.1). They are also useful in multiple linear regression. Although plot.lm() can easily do this,

here I use autoplot() from the ggfortify package. When applied to the final model, mod1, the

plot will in its default setting show four diagnostic plots: residuals vs. fitted values, normal Q-Q

plot, scale-location plot, and residuals vs. leverage plot. Note, this is for the full model inclusive

of the combined contributions of all the predictors, so we will not see separate plots for each

predictor as we have seen in the added-variable plots or component plus residual plots.

# Generate diagnostic plots

autoplot(mod1, shape = 21, colour = "dodgerblue4",
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Figure 5.3: Diagnostic plots to assess the fit of the final multiple linear regression model, mod1.

smooth.colour = "magenta") +

theme_bw()

Residuals vs. Fitted Values: In this plot we can assess linearity and homoscedasticity of the

residuals. If the seaweed godswerewith us, we’d expect the points to be randomly scattered about

a horizontal line situation at zero. This would indicate that the relationship between the predictors

selected by the forward selection process (augMean, febSD, and augSD) and the response variable

(Y) is linear, and the variance of the residuals is constant across the range of fittedvalues. In this plot,

there’s a very slight curvaturewhich might suggest a potential issuewith the linearity assumption—

it is minute and I’d suggest not worrying about it. The variance of the residuals seems to decrease

slightly at higher fitted values, indicating a mild case of heteroscedasticity.

Q-Q Plot (Quantile-Quantile Plot): This plot is used to check the normality of the residuals.

The points should fall approximately along a straight diagonal line if the residuals are normally

distributed. Here we see that the points generally follow the line although some deviations may

be seen at the tails. These deviations are not that extreme and again I don’t think this is not a big

concern.

Scale-Location Plot:This plot should reveal potential issueswith homoscedasticity. The square

root of the standardised residuals is used here to make it easier to spot patterns, so we would like

the points to be randomly scattered around the horizontal red line. Here, the line slopes slightly

downward and this indicates that the variance of the residuals might decrease as the fitted values

increase. We can also see evidence of this in a plot of the observed values vs. the predictors in

Figure 5.3.
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Residuals vs. Leverage: This diagnostic highlights influential points (outliers). Points with high

leverage (far from the mean of the predictors) can be expected to exert a strong influence on the

regression line, tilting it in some direction. Cook’s distance (indicated by the yellow line) helps

identify such outliers. In our seaweed data a few points could have a high leverage, but since they

don’t seem to cross the Cook’s distance thresholds, I doubt they are overly worrisome.

Considering that no glaring red flags were raised by the diagnostic plots, I doubt that they

are severe enough to invalidate the model. However, if you cannot stand these small issues, you

could i) consider transforming the predictor or response variables to address your concerns about

heteroscedasticity, ii) investigate the outliers (high leverage points) to confirm if they are valid

data points or errors, or iii) try robust regression methods that are less sensitive to outliers and

heteroscedasticity.

Component plus residual plots

Component plus residual plots offer another way to assess the fit of the model in multiple

regression models. Unlike simple linear regression where we only had one predictor variable, here

we have several. So, we need to assure ourselves that there is a linear relationship between each

predictor variable and the response variable (we could already see this in the added-variable plots

in Section 5.6.6). We can make component plus residual plots using the crPlots() function in

the car package. It displays the relationship between the response variable and each predictor

variable. If the relationship is linear, the points should be randomly scattered about a best fit line

and the spline (in pink in Figure 5.4) should plot nearly on top of the linear regression line.

# Generate component plus residual plots

crPlots(mod1, col = "dodgerblue4", col.lines = "magenta")

5.6.8 Understanding the Model Fit

The above model selection process has led us to the mod1model, which can be stated formally as:

𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜖 (5.4)

Where:

• 𝑌: The response variable, the mean Sørensen dissimilarity.
• 𝑋1, 𝑋2, and 𝑋3: The predictors corresponding to augMean, febSD, and augSD, respectively.
• 𝜖: The error term.

We have convinced ourselves that the model is a good fit for the data, and we can proceed

to examine the model’s output. The fitted model can be explored in two ways: by applying the

summary() function or by using the anova() function. The summary() function provides a de-

tailed output of the model, while the anova() function provides a table of deviance values that

can be used to compare models.

The model summary

# Summary of the selected model

summary(mod1)

>

> Call:

> lm(formula = Y ~ augMean + febSD + augSD, data = sw_sub1)
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Figure 5.4: Component plus residual diagnostic plots to assess the fit of the final multiple linear

regression model, mod1.

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.153994 -0.049229 -0.006086 0.045947 0.148579

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.028365 0.007020 4.040 6.87e-05 *﯂﯂﯂

> augMean 0.283335 0.011131 25.455 < 2e-16 *﯂﯂﯂

> febSD 0.049639 0.008370 5.930 8.73e-09 *﯂﯂﯂

> augSD 0.022150 0.004503 4.919 1.47e-06 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.06609 on 285 degrees of freedom

> Multiple R-squared: 0.8387, Adjusted R-squared: 0.837

> F-statistic: 494.1 on 3 and 285 DF, p-value: < 2.2e-16

The first part of the summary() function’s output is the Coefficients section. This is where

themain effects hypotheses are tested (thismodel does not have interactions—if therewere, they’d

appear here, too). The important components of the coefficients part of the model summary are:
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• (Intercept): This row provides information about where the regression line intersects the

y-axis.

• Main Effects:

– augMean, febSD, and augSD: These rows give the model coefficients associated with

the slopes of the regression lines fit to those predictor variables. They indicate the rate

of change in the response variable for a one-unit change in the predictor variable.

– Estimate, Std. Error, t value, and Pr(>|t|): These columns contain the statis-

tics used to interpret the hypotheses about the main effects. In the Estimate column

are the coefficients for the y-intercept and the main effects’ slopes, and Std. Error

indicates the variability of the estimate. The t value is obtained by dividing the coef-

ficient by its standard error. The p-value tests the null hypothesis that the coefficient is

equal to zero and significance codes are provided as a quick visual reference (their use

is sometimes frowned upon by statistics purists). Using this information, we can quickly

see that, for example, augMean has a coefficient of 0.2833 ± 0.0111 and the slope of
the line is highly significant, i.e. there is a significant effect of Y due to the temperature

gradient set up by augMean.

INFO The intercept and slope coefficients

The interpretation of the coefficients is a bit more complicated in multiple linear regression

compared to what we are accustomed to in simple linear regression. Let us look at some

greater detail at the intercept and the slope coefficients:

Intercept (𝛼): ) The intercept is the expected value of the response variable, 𝑌, when all
predictor variables are zero. It is not always meaningful, but it can be useful in some cases.

Slope Coefficients (𝛽1, 𝛽2, … , 𝛽𝑘): Each slope coefficient, 𝛽𝑗, represents the expected change in
the response variable, 𝑌, for a one-unit increase in the predictor variable, 𝑋𝑗, holding all other
predictor variables constant. This partial effect interpretation implies that 𝛽𝑗 accounts for
the direct contribution of 𝑋𝑗 to 𝑌while removing the confounding effects of other predictors
in the model. Figure 5.2 provides a visual representation of this concept and isolates the

effect of each predictor variable on the response variable.

Therefore, in the context of our model (Equation 5.4) for this analysis, the partial interpreta-

tion is as follows:

• 𝛽1: Represents the change in 𝑌 for a one-unit increase in 𝑋1, holding 𝑋2 and 𝑋3 constant.
• 𝛽2: Represents the change in 𝑌 for a one-unit increase in 𝑋2, holding 𝑋1 and 𝑋3 constant.
• 𝛽3: Represents the change in 𝑌 for a one-unit increase in 𝑋3, holding 𝑋1 and 𝑋2 constant.

There are also several overall model fit statistics—it is herewhere you’ll find the informationyou

need to assess the hypothesis about the overall significance of the model. Residual standard

error indicates the average distance between observed and fitted values. Multiple R-squared

and Adjusted R-squared values tell us something about the model’s goodness of fit. The latter

adjusts for the number of predictors in the model, and is the one you must use and report in

multiple linear regressions. As you also know, higher numbers approaching 1 are better, with 1

suggesting that the model perfectly captures all of the variability in the data. The F-statistic

and its associated p-value test the overall significance of the model and examines whether all

regression coefficients are simultaneously equal to zero. You can also use the brief overview of

the residuals, but I don’t find this particularly helpful—best examine the residuals in a histogram.

The ANOVA tables
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anova(mod1)

> Analysis of Variance Table

>

> Response: Y

> Df Sum Sq Mean Sq F value Pr(>F)

> augMean 1 6.0084 6.0084 1375.660 < 2.2e-16 *﯂﯂﯂

> febSD 1 0.3604 0.3604 82.507 < 2.2e-16 *﯂﯂﯂

> augSD 1 0.1057 0.1057 24.196 1.473e-06 *﯂﯂﯂

> Residuals 285 1.2448 0.0044

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This function provides a sequential analysis of variance (Type I ANOVA) table for the regression

model (see more about Type I ANOVA, below). As such, this function can also be used to compare

nested models. Used on a single model, it gives a more interpretable breakdown of the variability

in the response variable Y and assesses the contribution of each predictor variable in explaining

this variability.

The ANOVA table firstly shows the degrees of freedom (Df) for each predictor variable added

sequentially to the model, as well as the residuals. For each predictor, the degrees of freedom

is typically 1. For the residuals, however, it represents the total number of observations minus

the number of estimated parameters. The Sum of Squares (Sum Sq) indicates the variability in

Y attributable to each predictor, and the mean sum of squares (Mean Sq) is the sum of squares

divided by the degrees of freedom.

The F value is calculated as the ratio of the predictor’s mean square to the residual mean

square tests. It is used in testing the null hypothesis that the predictor has no effect on Y. Whether

or not we accept the alternative hypothesis (reject the null) is given by the p-value (Pr(>F)) that

goes with each F-statistic. You know how that works.

Because this is a sequentialANOVA, the amount of variance in Y explained by each predictor (or

group of predictors) is calculated by adding the predictors to the model in sequence (as specified in

the model formula). For example, the Sum of Squares for augMean (6.0084) represents the amount

of variance explained by adding augMean to a model that doesn’t include any predictors yet. The

Sum of Squares for febSD 0.3604) represents the amount of variance explained by adding febSD

to a model that already includes augMean—this improvement indicates that febSD explains some

of the variance in Y that augMean doesn’t.

INFO Order in which predictors are assessed in multiple linear regression

The interpretation of sequential ANOVA (Type I) is inherently dependent on the order in

which predictors are entered. In mod1 the order is first augMean, then febSD, and last comes

augSD. This order might not be the most meaningful for interpreting the sequential sums

of squares and their significance in the ANOVA table. How, then, does one decide on the

order of predictors in the model?

• If you have a strong theoretical or causal basis for thinking that certain predictors

influence others, you can enter them in that order.

• If you have a hierarchy of predictors based on their importance or general vs. specific

nature, you can enter them hierarchically.

• You can manually fit models with different predictor orders and compare the ANOVA
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tables to see how the results change. This can be time-consuming but might offer

insights into the sensitivity of your conclusions to the order of entry.

• You can use automated model selection procedures, such as stepwise regression, to

determine the best order of predictors. This is a more objective approach but can be

criticised for being data-driven and not theory-driven.

• Use Type II or Type III ANOVAs, which are are not order-dependent and can be used

to assess the significance of predictors after accounting for all other predictors in the

model. However, they have their own limitations and assumptions that need to be

considered.

My advice would be to have sound theoretical reasons for the order of predictors in the

model.

Both ways of looking at the model fit of mod1—summary() and anova()—show that forward

selection retained the variables augMean, febSD, and augSD. These three predictors should be

used together to explain the response, Y.

Let’s make a plot of the full model with all the initial predictors and the selected model with

the predictors chosen by the forward selection process.

# Add fitted values from the selected model to the dataframe

sw_ectz$.fitted_selected <- fitted(mod1)

# Create the plot of observed vs fitted values for the selected model

ggplot(sw_ectz, aes(x = .fitted_selected, y = Y)) +

geom_point(shape = 1, colour = "black", alpha = 1.0) +

geom_point(aes(x = .fitted), colour = "red",

shape = 1, alpha = 0.4) +

geom_abline(intercept = 0, slope = 1,

color = "blue", linetype = "dashed") +

labs(x = "Fitted Values",

y = "Observed Values") +

theme_bw()

5.6.9 Reporting

A Results section should be written in a format sutable for inclusion in your report or publication.

Present the results in a clear and concise manner, with tables and figures used to help substantiate

your findings. The results should be interpreted in the context of the research question and the

study design. The limitations of the analysis should also be discussed, along with any potential

sources of bias or confounding. Here is an example.

Results

The model demonstrates a strong overall fit, as indicated by the high 𝑅2 value of 0.839 and an
adjusted 𝑅2 of 0.837, suggesting that approximately 83.7% of the variance in the mean Sørensen
dissimilarity is explained by the predictors augMean, febSD, and augSD. All predictors in the model

are statistically significant, with augMean showing the strongest effect (𝛽1 = 0.283, 𝑝 < 0.0001)
(Figure 5.2). The predictors febSD and augSD also have significant positive relationships with the

response variable (𝛽2 = 0.050, 𝑝 = 0.0001; 𝛽3 = 0.022, 𝑝 = 0.0001). A sequential ANOVA further
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Figure 5.5: Plot of observed vs. predicted value obtained from the final multiple linear regression

model (mod) with the selected variables augMean, febSD, and augSD as predictors (black points),

and the initial model with also annMean and febRange (red points).

confirms the significance of each predictor variable in the model, with all F-values indicating

that the inclusion of each predictor significantly improves the model fit (𝑝 < 0.0001 in all cases).
Our model therefore provides clear support for the mean temperatures in August, the standard

deviation of temperatures in February, and the standard deviation of temperatures in August

as strong predictors of the mean Sørensen dissimilarity, with each contributing uniquely to the

explanation of variability in the response variable.

5.7 Example 2: Interaction of Distance and Bioregion

Our seaweed dataset includes two additional variables that we have not yet considered. These

are the continuous variable distwhich represents the geographic distance between the seaweed

samples taken along the coast of South Africa, and the categorical variable bio which is the

bioregional classification of the seaweed samples.

These two new variables lend themselves to a few interesting questions. For example:

1. Is the geographic distance between samples related to the Sørensens dissimilarity of the

seaweed flora?

2. Does the average Sørensens dissimilarity vary among the bioregions to which the samples

belong?

3. Is the effect of geographic distance on the Sørensens dissimilarity different for each biore-

gion?

The most complex model is (3), the one that answers the question about whether the effect of

dist on the response variable 𝑌 is different for each bioregion. Questions (1) and (2) are subsets
of this more inclusive question. To fully answer these quesitons, let’s first consider the full model,

which includes an interaction term between the continuous predictor dist and the categorical

predictor bio. When we finally test our model, we will also have to consider the simpler models

that do not include the interaction term.

‘Interaction’ means that the effect of one predictor on the response variable is contingent on

the value of another predictor. For example, we might have reason to suspect that the relationship
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of the Sørensens dissimilarity with the geographic distance between samples is different between

the west coast compared to, say, the east coast. This is indeed a plausible expectation, but we will

test this formally below.

The full multiple linear regression model with the interaction terms can be formally expressed

as Equation 5.5:

𝑌 = 𝛼 + 𝛽1dist + 𝛽2bioB-ATZ + 𝛽3bioBMP
+ 𝛽4bioECTZ + 𝛽5(dist × bioB-ATZ)
+ 𝛽6(dist × bioBMP) + 𝛽7(dist × bioECTZ) + 𝜖 (5.5)

Where:

• 𝑌: The response variable, the mean Sørensen dissimilarity.
• 𝛼: The intercept term.
• dist: The continuous predictor variable representing distance.

• bio: The categorical predictor variable representing bioregional classificationwith four levels:

AMP (reference category), B-ATZ, BMP, and ECTZ.

• bioB-ATZ,bioBMP,bioECTZ: Dummy variables for the bioregional classification, where:

– bioB-ATZ = 1 if bio = B-ATZ, and 0 otherwise,
– bioBMP = 1 if bio = BMP, and 0 otherwise, and
– bioECTZ = 1 if bio = ECTZ, and 0 otherwise.

• dist × bioB-ATZ,dist × bioBMP,dist × bioECTZ: Interaction terms between distance and the
bioregional classification dummy variables.

• 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7: The coefficients to be estimated for the main effects and interactions.
• 𝜖: The error term.

If this seems tricky, it is because of the dummy variable coding used to represent interactions

in multiple linear regression. The bio variable is a categorical variable with four levels, so we need

to create three dummy variables to represent the bioregional classification. The dist variable is

then interacted with each of these dummy variables to create the interaction terms. The lm()

function in R takes care of this for us in a far less complicated model statement. I’ll explain the

details around the interpretation of dummy variable coding when we look at the output of the

model with the summary() function.

5.7.1 State the Hypotheses for a Multiple Linear Regression with Interaction

Terms

Equation 5.5 expands into the following series of hypotheses that concern the main effects, the

interactions between the main effects, and the overall hypothesis:

Main effects hypotheses

In the main effects hypotheses we are concerned with the effect of each predictor variable on

the response variable. For the main effect of distance we have the null:

• 𝐻0 ∶ 𝛽1 = 0

vs. the alternative:

• 𝐻𝐴 ∶ 𝛽1 ≠ 0
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For the main effect of bioregional classification, the nulls are:

• 𝐻0 ∶ 𝛽2 = 0 (bioB-ATZ)
• 𝐻0 ∶ 𝛽3 = 0 (bioBMP)
• 𝐻0 ∶ 𝛽4 = 0 (bioECTZ)

vs. the alternatives:

• 𝐻𝐴 ∶ 𝛽2 ≠ 0 (bioB-ATZ)
• 𝐻𝐴 ∶ 𝛽3 ≠ 0 (bioBMP)
• 𝐻𝐴 ∶ 𝛽4 ≠ 0 (bioECTZ)

Hypotheses about interactions

This is where the hypothesis tests whether the effect of distance on the response variable is

different for each bioregional classification. The null hypotheses are:

• 𝐻0 ∶ 𝛽5 = 0 (dist × bioB-ATZ)
• 𝐻0 ∶ 𝛽6 = 0 (dist × bioBMP)
• 𝐻0 ∶ 𝛽7 = 0 (dist × bioECTZ)

vs. the alternatives:

• 𝐻𝐴 ∶ 𝛽5 ≠ 0 (dist × bioB-ATZ)
• 𝐻𝐴 ∶ 𝛽6 ≠ 0 (dist × bioBMP)
• 𝐻𝐴 ∶ 𝛽7 ≠ 0 (dist × bioECTZ)

Overall hypothesis

The overall hypothesis states that all coefficients associated with the predictors (distance,

bioregional categories, and their interactions) are equal to zero, therefore indicating no relationship

between these predictors and the response variable, the Sørensen index. The null hypothesis is:

• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 0

vs. the alternative:

• 𝐻𝐴 ∶ ∃ 𝛽𝑖 ≠ 0 for at least one 𝑖

5.7.2 Visualise the Main Effects

To facilitate the interpretation of the main effects hypotheses and make an argument for why

an interaction term might be necessary, I’ve visualised the main effects (Figure 5.6). I see this as

part of my exploratory data analysis ensemble of tests. We see that fitting a straight line to the

Y vs. distance relationship seems unsatisfactory as there is too much scatter around that single

line to adequately capture all the structure in the variability of the points. Colouring the points

by bioregion reveals the hidden structure. The model could benefit from including an additional

level of complexity: see how points in the same bioregion show less scatter compared to points

in different bioregions.

Now look at the boxplots of the Sørensen dissimilarity index for each bioregional classification.

It shows that the median values of the Sørensen dissimilarity index are different for each bioregion.

Taken together, Figure 5.6 (A, B) provide a good indication that adding the bioregional classification

might be an important predictor of the Sørensen dissimilarity index as a function of distance

between pairs of sites along the coast.

Next, we will move ahead and fit the model inclusive of the distance along the coast and

bioregion as per Equation (5.5).
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Figure 5.6: Plot of main effects of A) distance along the coast and B) bioregional classification on

the Sørensen dissimilarity index.

5.7.3 Fit and Assess Nested Models

I have a suspicion that the full model (mod2; see below) with the interaction terms will be a better

fit than reduced models with only the effect due to distance (seen independently). How can we

have greater certainty that we should indeed favour a slightly more complex model (with two

predictors) over a simpler one with only (distance only)?

Oneway to do this is to use a nested model comparison.Wewill fit a reduced model (one slope

for all bioregions) and compare this model to the full model (slopes are allowed to vary among

bioregions).

# Fit the linear regression model with only distance

mod2a <- lm(Y ~ dist, data = sw)

# Fit the multiple linear regression model with interaction terms

mod2 <- lm(Y ~ dist * bio, data = sw)

This is a nested model where mod2a is nested within mod2. ‘Nested’ means that the reduced

model is a subset of the full model. Nested models can be used to test hypotheses about the

significance of the predictors in the full model—does adding more predictors to the model improve

the fit? Comparing a nested model with a full model can be done with a sequential ANOVA, which

is what the anova() function also does (in addition to its use in Section 5.6.8).

So, comparing mod2a to mod2with an F-test tests the significance of adding the bio and using
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it together with dist. The interaction is built into mod2 but we are not yet testing the significance

of the interaction terms. We will do that later.

anova(mod2a, mod2, test = "F")

> Analysis of Variance Table

>

> Model 1: Y ~ dist

> Model 2: Y ~ dist * bio

> Res.Df RSS Df Sum of Sq F Pr(>F)

> 1 968 7.7388

> 2 962 2.2507 6 5.4881 390.95 < 2.2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The sequential ANOVA shows that there is significant merit to consider an interaction term

in the model. This model would then allow us to have a separate slope for the Sørensen index as

function of distance for each bioregion. The residual sum of squares (RSS) decreases from 7.7388

in Model 1 to 2.2507 in Model 2, which indicates that Model 2 explains a significantly larger

proportion of the variance in the response variable. The F-test for comparing the two models

yields an F-value of 390.95with a highly significant p-value (< 0.0001). The improvement in model

fit due to the inclusion of the interaction term is therefore statistically significant.

The above analyses skirted around the questions stated in the beginning of Section 5.7. I’ve

provided statistical evidence that full model is a better fit than the reduced model (the sequential

F-test tested this), so we should use both dist and bio in the model. I have not looked explicitly

at the main effects of the predictors. However, we can easily address questions (1) and (2):

• Question 1: looking at the summary of mod2a tells us that the main effect of dist is a

significant (p < 0.0001) predictor of the Sørensen dissimilarity index.

• Question 2: the main effect of bio is also significant (p < 0.0001), which is what we’d see if

we fit the model mod2b <-- lm(Y ~ bio, data = sw).

Question 3 warrants deeper investigation. Next, we will look at the interaction terms in the

full model mod2 to see if the effect of dist on Y is different for each level of bio.

5.7.4 Interpret the Full Model

The model summary

# Summary of the model

summary(mod2)

>

> Call:

> lm(formula = Y ~ dist * bio, data = sw)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.112117 -0.030176 -0.004195 0.023698 0.233520

>

> Coefficients:
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> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 5.341e-03 4.177e-03 1.279 0.2013

> dist 3.530e-04 1.140e-05 30.958 < 2e-16 *﯂﯂﯂

> bioB-ATZ -6.140e-03 1.659e-02 -0.370 0.7114

> bioBMP 3.820e-02 6.659e-03 5.737 1.29e-08 *﯂﯂﯂

> bioECTZ 1.629e-02 6.447e-03 2.527 0.0117 *

> dist:bioB-ATZ 7.976e-04 1.875e-04 4.255 2.30e-05 *﯂﯂﯂

> dist:bioBMP -1.285e-04 2.065e-05 -6.222 7.31e-10 *﯂﯂﯂

> dist:bioECTZ 4.213e-04 1.801e-05 23.392 < 2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.04837 on 962 degrees of freedom

> Multiple R-squared: 0.8607, Adjusted R-squared: 0.8597

> F-statistic: 849.2 on 7 and 962 DF, p-value: < 2.2e-16

In the output returned by summary(mod2), we need to pay special attention to the use of

dummy variable encoding for the categorical predictor. The Coefficients section is similar

to that of mod1 (see Section 5.6.8), but now it includes the categorical predictor bio﯂ and the

interaction terms dist:bio﯂ (* indicating the levels of the categorical variable). The bio variable

has four levels, BMP, B-ATZ, AMP, and ECTZ, and AMP is selected as reference level. This decision

to selected AMP as reference is entirely arbitrary, and alphabetical sorting offers a convenient

approach to selecting the reference. The coefficients for the other levels of bio are interpreted

as the sum of the response variable and the reference level.

The following are the key coefficients in the model summary:

• (Intercept): This is the estimated average value of Y when dist is zero and bio is the

reference category (AMP). Its p-value (> 0.05) suggests it’s not significantly different from

zero.

• Main Effects:

– dist: This represents the estimated change in Y for a one-unit increase in dist when

the bioregion is the reference category, AMP. The highly significant p-value (< 0.0001)

indicates a strong effect of distance in the AMP.

– bioB-ATZ, bioBMP, bioECTZ: These are dummy variables representing different biore-

gions. Their coefficients indicate the difference in the average value of Y between each

of these bioregions and the reference bioregion when dist is zero. Only bioBMP and

bioECTZ are significantly different from the reference bioregion, AMP.

• Interaction Effects:

– dist:bioB-ATZ, dist:bioBMP, dist:bioECTZ: These interaction terms capture how

the effect of dist on Y varies across different bioregions. For instance, dist:bioB-ATZ

indicates the additional change in the effect of dist in the B-ATZ bioregion compared

to the reference bioregion, AMP. All interaction terms are highly significant, suggesting

the effect of distance is different across bioregions.

Given this explanation, we can now interpret the coefficients of, for example, the bioB-ATZ

main effect and dist:bioB-ATZ interaction. Since AMP is the reference bioregion, its effect is

absorbed into the intercept term. Therefore, the coefficient for bioB-ATZ directly reflects the
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difference we are interested in. The coefficient for bioB-ATZ is -0.0061 ± 0.0166 lower than that
of the reference, but the associated p-value (> 0.05) indicates that the average value of Y in the

B-ATZ bioregion is not significantly different from the reference bioregion, AMP.

Ifwe’dwant to report the actual coefficient for B-ATZ, we’d calculate the sumof the coefficients

for (Intercept) and bioB-ATZ. Thiswould give us the estimated average value of Y in the B-ATZ

bioregion when dist is zero. The associated SE is calculated as the square root of the sum of the

squared SEs of the two coefficients. Therefore, the coefficient for B-ATZ is −8 × 10−4 ± 0.0171.
The coefficient of 8 × 10−4 for dist:bioB-ATZ indicates that the effect of distance on Y is

8 × 10−4 units greater in the B-ATZ bioregion compared to the AMP bioregion. The SE of 2 × 10−4
suggests a high level of precision in this estimate, and the p-value (< 0.0001) indicates that this

difference is statistically significant.

As before, to calculate the actual coefficient for dist in the B-ATZ bioregion, we’d sum the

coefficients for dist and dist:bioB-ATZ. The associated SE of this sum is calculated as the

square root of the sum of the squared SEs of the two coefficients. Therefore, the coefficient for

dist in the B-ATZ bioregion is 0.0012 ± 2 × 10−4.
Concerning the overall hypothesis, the Adjusted R-squared value of 0.8597 indicates that

the model explains 85.97% of the variance in the response variable Y. The F-statistic and

associated p-value (< 0.0001) indicate that the model as a whole is highly significant, meaning

at least one of the predictors (including interactions) has a significant effect on Y.

The ANOVA table

# The ANOVA table

anova(mod2)

> Analysis of Variance Table

>

> Response: Y

> Df Sum Sq Mean Sq F value Pr(>F)

> dist 1 8.4199 8.4199 3598.79 < 2.2e-16 *﯂﯂﯂

> bio 3 3.6232 1.2077 516.21 < 2.2e-16 *﯂﯂﯂

> dist:bio 3 1.8648 0.6216 265.69 < 2.2e-16 *﯂﯂﯂

> Residuals 962 2.2507 0.0023

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table’s interpretation is intuitive and simple: the Pr(>F) column shows the p-

value for each predictor in the model. The dist predictor has a highly significant effect on Y (<

0.0001), as do all the bioregions and their interactions with dist. This confirms the results we

obtained from the coefficients. We don’t need to overthink this result.

5.8 Example 3: The Final Model

I’ll now expand mod1 to include bio as a predictor alongside augMean, febSD, and augSD (mod1

was applied only to data pertaining to ECTZ, one of the four levels in bio).
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𝑌 = 𝛼 + 𝛽1augMean + 𝛽2febSD + 𝛽3augSD
+ 𝛽4bioB-ATZ + 𝛽5bioBMP + 𝛽6bioECTZ
+ 𝛽7(augMean × bioB-ATZ) + 𝛽8(augMean × bioBMP)
+ 𝛽9(augMean × bioECTZ) + 𝛽10(febSD × bioB-ATZ)
+ 𝛽11(febSD × bioBMP) + 𝛽12(febSD × bioECTZ)
+ 𝛽13(augSD × bioB-ATZ) + 𝛽14(augSD × bioBMP)
+ 𝛽15(augSD × bioECTZ) + 𝜖 (5.6)

Where:

• 𝑌: The response variable (mean Sørensen dissimilarity).
• 𝛼: The intercept term, representing the expected value of Ywhen all predictors are zero and
bio is at the reference level AMP).

• 𝛽1: The coefficient for the main effect of augMean.
• 𝛽2: The coefficient for the main effect of febSD.
• 𝛽3: The coefficient for the main effect of augSD.
• 𝛽4, 𝛽5, 𝛽6: The coefficients for the main effects of the categorical predictor bio (for levels
B-ATZ, BMP, and ECTZ respectively, with AMP as the reference category).

• 𝛽7, 𝛽8, 𝛽9: The coefficients for the interaction effects between augMean and bio (for levels
B-ATZ, BMP, and ECTZ respectively).

• 𝛽10, 𝛽11, 𝛽12: The coefficients for the interaction effects between febSD and bio (for levels
B-ATZ, BMP, and ECTZ respectively).

• 𝛽13, 𝛽14, 𝛽15: The coefficients for the interaction effects between augSD and bio (for levels
B-ATZ, BMP, and ECTZ respectively).

• 𝜖: The error term, representing the unexplained variability in the response variable.

In this multiple regression model, we aim to understand the complex and interacting relation-

ships between the response variables and the set of predictors. It allows us to investigate not only

the individual effects of the continuous predictors on Y, but also how these effects might vary

across the different bioregions.

The model therefore incorporates interaction terms between each continuous predictor

(augMean, febSD, and augSD) and the categorical variable bio. This allows us to assess whether

the relationships between augMean, febSD, or augSD and Y change depending on the specific

bioregion. Essentially, we are testing whether the slopes of these relationships are different in

different bioregions.

Additionally, the model examines the main effects of the bioregions themselves on Y. This

means we’re testing whether the average value of Y differs significantly across bioregions, after

accounting for the influence of the continuous predictors.

This is how these different insights pertain to the model components:

• Main Effects: The coefficients for the main effects of augMean, febSD, and augSD represent

the effect of each predictor when bio is at its reference level.

• Coefficients for bio: The coefficients for bio (e.g., 𝛽4bioB-ATZ) represent the difference in
the intercept for the corresponding level of bio compared to the reference level.

• Interaction Terms: The interaction terms allow the slopes of augMean, febSD, and augSD to

vary across the different levels of bio. For example, 𝛽7(augMean × bioB-ATZ) represents how
the effect of augMean on Y changes when bio is B-ATZ compared to AMP.
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5.8.1 State the Hypotheses

Overall hypothesis

I’ll only state the overall hypothesis for this model as the expansion of the individual hypotheses

for each predictor and interactions (all the 𝛽-coefficients in Equation 5.6) is quite voluminous.
The null is that there is no relationship between the response variable Y and the predictors

(including their interactions):

• 𝐻0 ∶ 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽8 = 𝛽9 = 𝛽10 = 𝛽11 = 𝛽12 = 𝛽13 = 𝛽14 = 𝛽15 = 0

The alternative is that at least one predictor or interaction term has a significant relationship

with the response variable Y:

• 𝐻𝐴 ∶ At least one 𝛽𝑖 ≠ 0 for 𝑖 ∈ {1, 2, ..., 15}

5.8.2 Fit the Model

In Section 5.6 I included the ECTZ seaweed flora in my analysis, but here I expand it to the full

dataset. To assuremyself that there is not a high degree ofmulticollinearity between the predictors,

I have calculated the variance inflation factors (VIFs) for the full model (not shown). This allowed

me to retain the same three predictors used in mod1, i.e. augMean, febSD, and augSD. This is the

point of departure for mod3.

Now I fit the model with those three continuous predictors and their interactions with the

categorical variable bio.

# Make a dataframe with only the relevant columns

sw_sub2 <- sw ||>

dplyr:::select(Y, augMean, febSD, augSD, bio)

# Fit the multiple linear regression model with interaction terms

full_mod3 <- lm(Y ~ (augMean + febSD + augSD) * bio, data = sw_sub2)

full_mod3a <- lm(Y ~ augMean + febSD + augSD, data = sw_sub2)

null_mod3 <- lm(Y ~ 1, data = sw_sub2)

Model full_mod3a is similar to full_mod3 but without the interaction terms. This will allow

me to compare the two models and assess the importance of the interactions.

# Compare the models

anova(full_mod3, full_mod3a)

> Analysis of Variance Table

>

> Model 1: Y ~ (augMean + febSD + augSD) * bio

> Model 2: Y ~ augMean + febSD + augSD

> Res.Df RSS Df Sum of Sq F Pr(>F)

> 1 954 3.5603

> 2 966 5.6890 -12 -2.1288 47.535 < 2.2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC(full_mod3, full_mod3a)
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> df AIC

> full_mod3 17 -2652.498

> full_mod3a 5 -2221.852

The AIC value for full_mod3 is lower than that of full_mod3a, indicating that including the

interaction with bio is necessary. Likewise, the ANOVA test also shows that the full model (lower

residual sum of squares) is significantly better than the reduced model.

I therefore use full_mod3 going forward. This is a complex model so I have used the stepwise

selection function, stepAIC(), to identify the most important predictors and interactions (code

and output not shown). I hoped that this might have simplified the model somewhat, but the

simplification I had hoped for did not materialise.

5.8.3 Interpret the Model

The model summary

The model summary provides a detailed look at the individual predictors and their interactions

in the model.

# Summary of the model

summary(mod3) # full_mod3 renamed to mod3 during stepAIC()

>

> Call:

> lm(formula = Y ~ augMean + bio + augSD + febSD + augMean:bio +

> bio:augSD + bio:febSD, data = sw_sub2)

>

> Residuals:

> Min 1Q Median 3Q Max

> -0.15399 -0.03841 -0.01475 0.03464 0.24051

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.0299094 0.0062756 4.766 2.17e-06 *﯂﯂﯂

> augMean 0.3441099 0.0158575 21.700 < 2e-16 *﯂﯂﯂

> bioB-ATZ -0.0459611 0.0242519 -1.895 0.058374 .

> bioBMP 0.0160756 0.0100749 1.596 0.110906

> bioECTZ -0.0015444 0.0090275 -0.171 0.864197

> augSD -0.0059012 0.0034011 -1.735 0.083044 .

> febSD -0.0006481 0.0027954 -0.232 0.816706

> augMean:bioB-ATZ -0.0461775 0.0874044 -0.528 0.597400

> augMean:bioBMP -0.2406297 0.0211404 -11.382 < 2e-16 *﯂﯂﯂

> augMean:bioECTZ -0.0607745 0.0189030 -3.215 0.001348 ﯂﯂﯂

> bioB-ATZ:augSD 0.0655983 0.0371033 1.768 0.077382 .

> bioBMP:augSD 0.0410220 0.0114706 3.576 0.000366 *﯂﯂﯂

> bioECTZ:augSD 0.0280513 0.0053752 5.219 2.21e-07 *﯂﯂﯂

> bioB-ATZ:febSD 0.0409425 0.0818927 0.500 0.617223

> bioBMP:febSD 0.0056433 0.0150126 0.376 0.707070

> bioECTZ:febSD 0.0502867 0.0082266 6.113 1.43e-09 *﯂﯂﯂
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> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.06109 on 954 degrees of freedom

> Multiple R-squared: 0.7797, Adjusted R-squared: 0.7762

> F-statistic: 225.1 on 15 and 954 DF, p-value: < 2.2e-16

The first thing to notice is that the model function has been rewritten in the forward selection

process (but none of the variables were deemed insignificant and removed):

• Initial specification: Y ~ (augMean + febSD + augSD) * bio

• Specification after stepAIC(): Y ~ augMean + bio + augSD + febSD + augMean:bio

+ bio:augSD + bio:febSD

Functionally, these two are identical, but the order in which the terms are presented differs.

Although this has affected the order inwhich the coefficients are presented in the summary output,

the coefficients are the same. The coefficients are:

• (Intercept): This is the estimated average value of Ywhen all predictor variables are zero

and the observation is in the reference bioregion (AMP).

• Main Effects:

– augMean: For every one-unit increase in augMean, Y increases by 0.3441, on average,

assuming all other predictors are held constant. This effect is highly significant.

– augSD and febSD: The main effects of these variables are not statistically significant,

suggesting they might not have a direct impact on Y when averaged across all biore-

gions.

– bioB-ATZ, bioBMP, bioECTZ: These coefficients represent the average difference in Y

between each of these bioregions and the reference bioregion, when the continuous

predictors are held at zero.

• Interaction Effects:

– augMean interactions: The significant interactions of augMean with bioregion indicate

that the effect of augMean on Y varies across bioregions. Notably, the interaction with

bioBMP has a strong, significant negative effect, suggesting that the positive effect of

augMean is much weaker in this bioregion compared to the reference.

– augSD and febSD interactions: These interactionswith bioregions are sometimes signif-

icant, providing good support for the alternative hypothesis that the effects of augSD

and febSD on Y depend on the specific bioregion.

Since dummy coding returns differences with respect to reference levels, howwould we cal-

culate the actual coefficients for, say, augMean? Since there are significant interaction effects, we

must consider the main effect of augMean in conjunction with bioregion.

For bio = B-ATZ:

• 𝛽augMean + 𝛽augMean:bioB-ATZ = 0.3441099 + (−0.0461775) = 0.2979324

For bio = BMP:

• 𝛽augMean + 𝛽augMean:bioBMP = 0.3441099 + (−0.2406297) = 0.1034802
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For bio = ECTZ:

𝛽augMean + 𝛽augMean:bioECTZ = 0.3441099 + (−0.0607745) = 0.2833354
The respective SEs for these coefficients can be calculated using the formula for the standard

error of the sum of two variables. For example:

• 𝑆𝐸augMean = √𝑆𝐸2augMean + 𝑆𝐸2augMean:bio

The ANOVA table

The ANOVA table assesses the overall significance of groups of predictors or the sequential

addition of predictors to the model.

anova(mod3)

> Analysis of Variance Table

>

> Response: Y

> Df Sum Sq Mean Sq F value Pr(>F)

> augMean 1 9.9900 9.9900 2676.902 < 2.2e-16 *﯂﯂﯂

> bio 3 1.1901 0.3967 106.296 < 2.2e-16 *﯂﯂﯂

> augSD 1 0.1393 0.1393 37.331 1.451e-09 *﯂﯂﯂

> febSD 1 0.0053 0.0053 1.422 0.2334

> augMean:bio 3 0.7910 0.2637 70.647 < 2.2e-16 *﯂﯂﯂

> bio:augSD 3 0.3426 0.1142 30.602 < 2.2e-16 *﯂﯂﯂

> bio:febSD 3 0.1401 0.0467 12.517 4.953e-08 *﯂﯂﯂

> Residuals 954 3.5603 0.0037

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TheANOVA table shows that the model is highly significant, with very low p-values throughout

(< 0.0001). This indicates that the model as a whole is a good fit for the data.

5.8.4 Reporting

Here is what the reporting of the findings could look like in the Results section in your favourite

journal.

Results

A multiple linear regression model examining the effects of the August climatological mean

temperature (augMean), the August and February climatological SD of temperature (augSD and

febSD, respectively), and the bioregion classification (bio) on the response variable, the Sørensen

dissimilarity (Y), including their interaction terms, revealed several significant findings (Table 5.1).

This model allows a separate regression slope for each predictor within the bioregions (Figure 5.7).

The model explains a substantial portion of the variance in Y (𝑅2 = 0.780, adjusted 𝑅2 = 0.776),
and the overall model fit is highly significant (𝐹(15, 954) = 225.1, 𝑝 < 0.0001).
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Table 5.1: Summary of the multiple linear regression model examining the effects of augMean,

augSD, febSD, and bio on Y.

Coefficient Estimate Std. Error t value P-value

(Intercept) 0.0299 0.0063 4.766 < 0.0001 ***

augMean 0.3441 0.0159 21.700 < 0.0001 ***

bioB-ATZ -0.0460 0.0243 -1.895 > 0.05

bioBMP 0.0161 0.0101 1.596 > 0.05

bioECTZ -0.0015 0.0090 -0.171 > 0.05

augSD -0.0059 0.0034 -1.735 > 0.05

febSD -0.0006 0.0028 -0.232 > 0.05

augMean:bioB-ATZ -0.0462 0.0874 -0.528 > 0.05

augMean:bioBMP -0.2406 0.0211 -11.382 < 0.0005 ***

augMean:bioECTZ -0.0608 0.0189 -3.215 < 0.005 **

bioB-ATZ:augSD 0.0656 0.0371 1.768 > 0.05

bioBMP:augSD 0.0410 0.0115 3.576 < 0.0005 ***

bioECTZ:augSD 0.0281 0.0054 5.219 < 0.0005 ***

bioB-ATZ:febSD 0.0409 0.0819 0.500 > 0.05

bioBMP:febSD 0.0056 0.0150 0.376 > 0.05

bioECTZ:febSD 0.0503 0.0082 6.113 < 0.0005 ***

The main effect of augMean was highly significant (Estimate = 0.3441, 𝑝 < 0.0001), indicating
a strong positive relationship with Y. The interaction term augMean:bioBMP (Estimate = -0.2406,

𝑝 < 0.0001) and augMean:bioECTZ (Estimate = -0.0608, 𝑝 < 0.005) were also significant, suggest-
ing that the effect of augMean on Y varies significantly for BMP and ECTZ bioregions compared to

the reference category (AMP). The bioBMP (Estimate = 0.0161, 𝑝 > 0.05) and bioECTZ (Estimate =
-0.0015, 𝑝 > 0.05) terms were not significant, indicating no significant difference from AMP.

For augSD, the main effect was not significant (Estimate = -0.0059, 𝑝 > 0.05). Significant inter-
action terms for bioBMP:augSD (Estimate = 0.0410, 𝑝 < 0.001) and bioECTZ:augSD (Estimate =
0.0281, 𝑝 < 0.0001) indicate that the effect of augSD on Y varies by bioregion.
The main effect of febSD was not significant (Estimate = -0.0006, 𝑝 > 0.05), suggesting no

direct relationship with Y. However, the interaction term bioECTZ:febSD (Estimate = 0.0503,

𝑝 = 0.0001) was significant, indicating that the effect of febSD on Y differs for the ECTZ bioregion.
The ANOVA further highlights the overall significance of each predictor. augMean had a highly

significant contribution to the model (𝐹 = 2676.902, 𝑝 < 0.0001), as did bio (𝐹 = 106.296, 𝑝 <
0.0001), and their interactions (augMean:bio, 𝐹 = 70.647, 𝑝 < 0.0001; bio:augSD, 𝐹 = 30.602,
𝑝 < 0.0001; bio:febSD, 𝐹 = 12.517, 𝑝 = 4.953 × 10−8). The main effect of augSD was also
significant (𝐹 = 37.331, 𝑝 = 1.451 × 10−9), while febSD did not significantly contribute to the
model on its own (𝐹 = 1.422, 𝑝 = 0.2334).
These findings suggest that the effects of augMean, augSD, and febSD on Y are influenced

by the bioregional classification, with significant variations in the relationships depending on the

specific bioregion.

5.9 Alternative Categorical Variable Coding Schemes (Contrasts)

Throughout the book, we have used dummy variable coding the specify the categorical variables

in the multiple linear regression models. But, should dummy variable coding not be to your liking,
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Figure 5.7: Individual linear regression fit to the variables augMean, febSD, and augSD for each

bioregion as predictors of the seaweed species composition.

there are other coding schemes that can be used to represent the categorical variables. These

alternative coding schemes are known as contrasts. The choice of contrast coding can affect the

interpretation of the regression coefficients.

I’ll provide some synthetic data to illustrate a few different contrasts. The data consist of a

continuous variable x, a categorical variable cat_varwith four levels, and a response variable y

that has some relationship with x and cat_var. I’ll use dummy variable coding as the reference

(haha!).

head(data)

> y x cat_var

> 1 0.6667876 -0.56047565 B

> 2 1.3086873 -0.23017749 B

> 3 0.4496192 1.55870831 D

> 4 2.1326402 0.07050839 A

> 5 -2.8608771 0.12928774 D

> 6 0.1497346 1.71506499 D

Categorical variable coding (any scheme) only affects the interpretation of the categorical

variable main effects and their interactions, so I’ll not discuss the coefficient associated with the

continuous variable x (the slope) in the model throughout the explanations offered below.

DummyVariable Coding (Treatment Contrasts)

This is the most commonly used coding scheme, and lm()’s default. One level is the reference

category (A) and the other levels are compared against it. Contrast matrices can be assigned

and/or inspected using the contrasts() function. For the dummy coding, the reference level

A will remain 0 and the other levels will be independently coded as 1 in three columns. You’ll
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now understand why, when we have four levels within a categorical variable, we only need three

dummy variables to represent them.

# Dummy coding (treatment coding) ..... default

contrasts(data$cat_var)

> B C D

> A 0 0 0

> B 1 0 0

> C 0 1 0

> D 0 0 1

When we have four levels in a categorical variable, there are three dummy variable columns in

the contrast matrix. The first row, consisting of all zeros (0, 0, 0), represents the reference level,

which in this case is A. The other rows represent the different levels of the categorical variable,

with a 1 in the respective column indicating that level. For example, level A is represented by (0, 0,

0), B by (1, 0, 0), C by (0, 1, 0), and D by (0, 0, 1). In the regression model, these contrasts are used to

estimate the differences between each level and the reference level. Specifically, the first contrast

column indicates that the coefficient for this column will represent the difference between the

mean of the response variable for level B and the mean for the reference level A, holding all other

variables constant. Similarly, the second and third columns represent the differences between

levels C and A, and D and A, respectively. This coding allows for a straightforward interpretation of

how each level of the categorical variable affects the response variable relative to the reference

level.

model_dummy <- lm(y ~ x + cat_var, data = data)

summary(model_dummy)

>

> Call:

> lm(formula = y ~ x + cat_var, data = data)

>

> Residuals:

> Min 1Q Median 3Q Max

> -1.6615 -0.6297 -0.1494 0.4978 2.9305

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 2.8176 0.1635 17.232 < 2e-16 *﯂﯂﯂

> x 1.8274 0.1040 17.572 < 2e-16 *﯂﯂﯂

> cat_varB -1.7201 0.2499 -6.883 6.24e-10 *﯂﯂﯂

> cat_varC -3.9056 0.2678 -14.586 < 2e-16 *﯂﯂﯂

> cat_varD -5.4880 0.2512 -21.850 < 2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.9246 on 95 degrees of freedom

> Multiple R-squared: 0.887, Adjusted R-squared: 0.8822

> F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16
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The model summary shows that the coefficients for cat_varB, cat_varC, and cat_varD

represent the differences in the mean of the response variable y between the reference category

A and categories B, C, and D, respectively, while controlling for the effect of the continuous variable

x.

Interpretation:

• (Intercept) (2.8176): The intercept represents the estimated mean value of the response

(y) when x is zero and the categorical variable is at the reference level A. This is the baseline

from which other categories are compared.

• x (1.8274): For each one-unit increase in x, y is expected to increase by 1.8274 units, holding

the categorical variable constant. This effect is consistent across all levels of the categorical

variable because the model does not have an interaction effect present.

• cat_varB (-1.7201): On average, the value of y for level B is 1.7201 units lower than that

for the reference level A, when x is held constant. This corresponds to the (1, 0, 0) row in

the contrast matrix.

• cat_varC (-3.9056): Similarly, on average, the value of y for level C is 3.9056 units lower

than that for the reference level, when x is held constant. This corresponds to the (0, 1, 0)

row in the contrast matrix.

• cat_varD (-5.4880): Lastly, on average, the value of y for level D is 5.4880 units lower

compared to the reference , when x is held constant. This is row (0, 0, 1) row in the contrast

matrix.

All these coefficients are highly significant (p < 0.0001), indicating strong evidence for differ-

ences between each category and the reference category A.

The model explains a large proportion of the variance in y (Adjusted R-squared: 0.8822), sug-

gesting a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001) indicates that the

model as a whole is statistically significant.

If you want to change the reference level, you can use the relevel() function. For example,

to change the reference level of cat_var variable to C_2, you can use:

# Set "C" as the reference level for cat_var

data$cat_var <- relevel(data$cat_var, ref = "C")

contrasts(data$cat_var)

> A B D

> C 0 0 0

> A 1 0 0

> B 0 1 0

> D 0 0 1

This may be useful when you want to compare the other levels to a different reference level.

Effect Coding (Sum Contrasts)

This coding method compares the levels of a categorical variable to the overall mean of the

dependent variable. The coefficients represent the difference between each level and the grand

mean. Instead of using 0 and 1 as we did with dummy variable coding, effect coding uses -1, 0,

and 1 to represent the different levels of the categorical variable.

# Reset the reference level to "A"

data <- data.frame(y, x, cat_var)
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# Effect coding

contrasts(data$cat_var) <- contr.sum(4)

contrasts(data$cat_var)

> [,1] [,2] [,3]

> A 1 0 0

> B 0 1 0

> C 0 0 1

> D -1 -1 -1

In effect coding (sum contrasts), each level of the categorical variable is compared to the overall

mean rather than a specific reference category. This contrast matrix with four levels (A, B, C, D)

and three columns can be interpreted as follows:

• Level A (1, 0, 0): The first row indicates that level A is included in the first contrast (cat_var1),

which means the mean of level A is being compared to the overall mean. Since the other

columns are zero, level A does not contribute to the other contrasts.

• Level B (0, 1, 0): The second row indicates that level B is included in the second contrast

(cat_var2). The mean of level B is being compared to the overall mean, and it does not

contribute to the other contrasts.

• Level C (0, 0, 1): The third row indicates that level C is included in the third contrast

(cat_var3). The mean of level C is being compared to the overall mean, and it does not

contribute to the other contrasts.

• Level D (-1, -1, -1): The fourth row is a balancing row, ensuring that the sum of the contrasts

for each level equals zero. This indicates that level D is being compared to the overall mean

indirectly by balancing the contributions of levels A, B, and C.

model_effect <- lm(y ~ x + cat_var, data = data)

summary(model_effect)

>

> Call:

> lm(formula = y ~ x + cat_var, data = data)

>

> Residuals:

> Min 1Q Median 3Q Max

> -1.6615 -0.6297 -0.1494 0.4978 2.9305

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.03921 0.09452 0.415 0.679

> x 1.82741 0.10400 17.572 < 2e-16 *﯂﯂﯂

> cat_var1 2.77844 0.14968 18.563 < 2e-16 *﯂﯂﯂

> cat_var2 1.05832 0.16329 6.481 4.04e-09 *﯂﯂﯂

> cat_var3 -1.12720 0.17765 -6.345 7.53e-09 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.9246 on 95 degrees of freedom

> Multiple R-squared: 0.887, Adjusted R-squared: 0.8822
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> F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

Interpretation:

• (Intercept) 0.03921: The intercept represents the grand mean of the response variable

(y). Since the intercept is not statistically significant (p > 0.05), it indicates that the overall

mean is not significantly different from zero when considering the average effect of all levels

of the categorical variable.

• x (1.82741): For each one-unit increase in (x), the response (y) increases by approximately

1.82741 units. This effect is highly significant (p < 0.0001).

• cat_var1 (2.77844): Level A has a mean (y) that is 2.77844 units higher than the grand

mean. This effect is highly significant (p < 0.0001).

• cat_var2 (1.05832): Level B has a mean (y) that is 1.05832 units higher than the grand

mean. This effect is also highly significant (p < 0.0001).

• cat_var3 (-1.12720): Level C has a mean (y) that is 1.12720 units lower than the grand

mean. This effect is highly significant (p < 0.0001).

All these coefficients are highly significant (p < 0.0001), indicating strong evidence for differ-

ences between each category and the overall mean of all levels.

The model explains a large proportion of the variance in y (Adjusted R-squared: 0.8822), sug-

gesting a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001) indicates that the

model as a whole is statistically significant.

Helmert Coding

Helmert coding compares each level of a categorical variable to the mean of the subsequent

levels. It is useful for testing ordered differences.

# Helmert coding

contrasts(data$cat_var) <- contr.helmert(4)

contrasts(data$cat_var)

> [,1] [,2] [,3]

> A -1 -1 -1

> B 1 -1 -1

> C 0 2 -1

> D 0 0 3

The contrast matrix for a categorical variable with four levels (A, B, C, D) and three columns can

be interpreted as follows:

• Level A (-1, -1, -1): Level A is compared to the mean of levels B, C, and D. The negative values

indicate that level A is being subtracted in these comparisons.

• Level B (1, -1, -1): Level B is compared to the mean of levels C and D. The positive value in

the first column indicates that level B is being added in this comparison.

• Level C (0, 2, -1): Level C is compared to the mean of level D. The positive value in the second

column indicates that level C is being added in this comparison, while the negative value in

the third column is part of the comparison for subsequent levels.

• Level D (0, 0, 3): Level D is compared on its own in the final contrast. The positive value in

the third column indicates that level D is being added in this comparison.
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model_helmert <- lm(y ~ x + cat_var, data = data)

summary(model_helmert)

>

> Call:

> lm(formula = y ~ x + cat_var, data = data)

>

> Residuals:

> Min 1Q Median 3Q Max

> -1.6615 -0.6297 -0.1494 0.4978 2.9305

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 0.03921 0.09452 0.415 0.679

> x 1.82741 0.10400 17.572 < 2e-16 *﯂﯂﯂

> cat_var1 -0.86006 0.12495 -6.883 6.24e-10 *﯂﯂﯂

> cat_var2 -1.01519 0.08206 -12.371 < 2e-16 *﯂﯂﯂

> cat_var3 -0.90319 0.05477 -16.491 < 2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 0.9246 on 95 degrees of freedom

> Multiple R-squared: 0.887, Adjusted R-squared: 0.8822

> F-statistic: 186.4 on 4 and 95 DF, p-value: < 2.2e-16

Interpretation:

• (Intercept) (0.03921): The grand mean of ywhen x is zero.

• x (1.82741): For each unit increase in x , y increases by 1.82741 units.

• cat_var1 (-0.86006): The mean of level A is 0.86006 units lower than the combined mean

of levels B, C, and D.

• cat_var2 (-1.01519): The mean of level B is 1.01519 units lower than the combined mean

of levels C and D.

• cat_var3 (-0.90319): The mean of level C is 0.90319 units lower than the mean of level D.

The interpretation of the overall model remains more-or-less similar to before:

All these coefficients are highly significant (p < 0.0001), indicating strong evidence for differ-

ences between each level and the overall mean of all subsequent levels.

The model explains a large proportion of the variance in y (Adjusted R-squared: 0.8822), sug-

gesting a good fit. The F-statistic (186.4) with a very low p-value (< 0.0001) indicates that the

model as a whole is statistically significant.
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5.10 Exercises

Exclamation Task G

Use the data loaded at the start of this chapter for this task.

In this task you will develop data analysis, undertake model building, and provide an in-

terpretation of the findings. Your goal is to explore the species composition and assembly

processes of the seaweed flora around the coast of South Africa. See Smit et al. (2017) for

more information about the data and the analysis.

a. Analysis: Please develop multiple linear regression models for the seaweed species

composition (𝛽sim and 𝛽sne, i.e. columns called Y1 and Y2, respectively) using the all the
predictors in this dataset. At the end, the final model(s) that best describe(s) the species

assembly processes operating along the South African coast should be presented. The

final model may/may not contain all the predictors in the dataset, and it is your goal

to justify the variable and model selection.

• Accomplishing a) will require that you work through the whole model-building

process as outlined in the chapter. This includes the following steps:

– Data exploration and visualisation (EDA)

– Model building (providing hypothesis statements, variable selection using

VIF and forward selection, comparisons of nested models, justifications for

model selection)

– Model diagnostics

– Explanation of summary() and anova() outputs

– Producing the Results section

– [60%]

b. Interpretation: Once you have arrived at the best model, discuss your findings in the

light of the appropriate ecological hypotheses that explain the relationships between

the predictors and the seaweed species composition. Include insights drawn from the

analysis of 𝛽sør that I developed in this chapter, and also rely on the theory you have
developed for the lecture material the class presented in Task A2.

• Accomplishing b) is thus all about model interpretation and discussing the eco-

logical relevance of the results.

• [40%]

The format of this task is a Quarto file that will be converted to an HTML file. The HTML

file will contain the graphs, all calculations, and the text sections. The task should be written

up as a publication (i.e. use appropriate headings) using a journal style of your choice. Aside

from this, there are no limitations.
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Chapter 6

Generalised Linear Models (GLM)

6.1 Logistic Regression

A logistic regression model is used when the dependent variable is binary (e.g., 0 or 1, yes or no).

The logistic regression model is expressed as:

log ( 𝑝
1 − 𝑝) = 𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘 (6.1)

Where:

• 𝑝 is the probability of the dependent variable being 1,
• 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘 are the 𝑘 predictor variables for the 𝑖-th observation,
• 𝛼 is the intercept,
• 𝛽1, 𝛽2, … , 𝛽𝑘 are the coefficients for the 𝑘 predictor variables.
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Chapter 7

Nonlinear Models

In This Chapter

• Nonlinear Regression

Elsewhere in the Book

• Simple Linear Regression

• Polynomial Regression

• Multiple Linear Regression

• Generalised Linear Models

• Generalised Additive Models

Nonlinear regression models are used when the relationship between the response variable

(dependent variable, 𝑌) and the predictor variables (independent variables, 𝑋) is not linear. In
other words, they are employed when a straight line is not an appropriate representation of the

relationship between the variables.

As we have seen in Section 3.1, polynomial regressions provide a nonlinear relationship be-

tween the response and predictor variables (as seen in the regression line fit to the data, Figure 7.1

A), but they are considered linear models because the parameters are estimated using linear least

squares. Another type of nonlinear model is a semi-parametric model where the relationship

between the response and predictor variables is described by a function that includes both para-

metric and non-parametric components. An example of a semi-parametric model is the generalised

additive model (GAM) that includes a non-parametric component in the form of a spline function

(Chapter 11; Figure 7.1 B).

The type of nonlinear model I cover in this chapter is a parametric model where the relation-

ship between the response and predictor variables is described by a specific nonlinear function

(Figure 7.1 C). The model still assumes that the residuals are normally distributed and exhibit

homoscedasticity. The model parameters are estimated by minimising the sum of squared differ-

ences between the observed and predicted values, a method commonly referred to as nonlinear

least squares (NLS) regression. This is the term I will adopt.

The primary purpose of nonlinear regression is to derive a formula (model), analyse data, and

predict new values where the phenomenon exhibits a nonlinear causal pattern or behaviour. Non-

linear models include a variety of response forms, such as exponential growth models, logistic

growth models, and other mechanistic models derived from physical, chemical, or biological pro-

cesses. Examples of such models include trigonometric, logarithmic, and user-defined functions
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like the von Bertalanffy model or seasonal cycle represented by a sine curve (Figure 7.1 C). These

models are explicitly nonlinear in both their form and parameters. Unlike polynomial regression,

where only the terms of𝑋 are transformed, nonlinearmodels involve an entirely nonlinear function
relating 𝑋 and 𝑌. They are often used when there is a theoretical basis for the specific form of
the relationship, providing interpretable parameters that carry specific meanings based on the

underlying theory, making them useful for detailed applications where the dynamics of the system

are well-understood.

A general formula for a nonlinear regression model is:

𝑌𝑖 = 𝑓(𝑋𝑖; 𝜃) + 𝜖𝑖 (7.1)

Where:

• 𝑌𝑖 is the response variable for the 𝑖-th observation,
• 𝑋𝑖 is the predictor variable for the 𝑖-th observation,
• 𝑓(𝑋𝑖; 𝜃) is a nonlinear function of 𝑋𝑖 parameterised by the vector 𝜃,
• 𝜃 is the vector of parameters to be estimated, and
• 𝜖𝑖 is the error term for the 𝑖-th observation and is assumed to be i.i.d. with a normal distribu-
tion.

An example of a specific nonlinear regression model is the exponential growth model:

𝑌𝑖 = 𝛼𝑒𝛽𝑋𝑖 + 𝜖𝑖 (7.2)

Where:

• 𝛼 and 𝛽 are the parameters to be estimated,
• 𝑒 is the base of the natural logarithm, and
• 𝜖𝑖 is the error term for the 𝑖-th observation.

This model is nonlinear in the parameters 𝛼 and 𝛽, and it describes an exponential relationship
between the predictor 𝑋 and the response 𝑌.

7.1 Extension of Nonlinear Models

Like linear models, nonlinear models have also been extended to include multiple predictors, inter-

actions, and other terms to capture complex relationships between the variables. The first type of

more complex nonlinear models accommodates a wider range of data distributions by generalising

to non-normal error distributions through link functions. These models are called generalised

nonlinear models (GNLMs). The examples of GLMs in Chapter 6 should prepare you sufficiently

to handle nonlinear models too. The other type deals with hierarchical data structures and incor-

porates fixed and random effects. As such, you can also correctly model repeated measures and

longitudinal, and nested (grouped) designs. These hierarchical models are called nonlinear mixed

models (NLMMs). Examples of NLMMs are provided in Section 7.5.2 and Section 7.5.3.

7.2 Considerations for Model Selection

There are a few practical considerations to keep in mind when choosing a suitable nonlinear (in

shape) model. Sometimes different models can provide similar fits to the same data, but they may
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Figure 7.1: Nonlinear regression models fitted to simulated data. A) a cubic polynomial model, B)

a GAM with a thin plate regression spline, and C) a NLS sine curve as a seasonal cycle.

have different implications for the interpretation of the relationship between the variables. See for

example Figure 7.2. The plot shows growth rate data fitted with a first-, second- and third-order

polynomial, a GAM, and a NLS von Bertalanffy model. To the untrained eye and inexperienced

biologist, all models seem to provide a good fit to the data, but they do differ subtly in the shape

of the fitted curve. The von Bertalanffy model is a saturating growth model (it reaches a plateau),

while the polynomial models and the GAM are more flexible and can capture a wider range of

shapes. The choice of model should be guided by the underlying biological or physical processes

that generated the data and the research question you are trying to answer.

Since you will often have to decide among polynomial regressions, nonlinear models, and

GAMs, I’ll outline some general guidelines to help you make an informed decision.

• Linearity vs. Nonlinearity: If the relationship between the variables is linear or can be ade-

quately approximated by a polynomial function, polynomial regression is a suitable choice.

Nonlinear models or GAMs may be more appropriate if the relationship is nonlinear and

does not follow a specific polynomial form. In Figure 7.2, it is obvious that the straight line

model is not a good fit for the data, but the second- and third-order polynomial models, the

GAM, and the von Bertalanffy model all provide better fits.

• Complexity of the Relationship: Polynomial regression is limited in its ability to capture

complex nonlinear relationships, especially those with more bends, peaks, or valleys than

a polynomial of order <3 (or even 4 at a push) can capture. Another consideration is the

process the data represent: if it is inherently nonlinear according to a known function such as

exponential growth or decay, seasonal sinusoidal patterns, or logistic growth, then nonlinear

models or GAMs are more flexible and can capture a wider range of nonlinear responses.

In Figure 7.2, the von Bertalanffy model is a saturating growth model, which is a known

biological process that can be captured by a nonlinear model. The 3rd-order polynomial

model also seems to capture a saturating growth pattern, but it also somewhat influenced
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Figure 7.2: Plot of growth rate data fitted with a von Bertalanffy model, a first- (straight line),

second- and third-order polynomial, and a GAM.

by the dip in the raw data around 12.5 years (in addition to some other nuances), but this is

likely due to some random variation and is not part of the growth response.

• Interpretability vs. Flexibility: Polynomial regression provides coefficients that relate to the

powers of the predictorvariables, but the interpretation of the 𝛽 parameters is not as intuitive
as in a linearmodel of order 1. In contrast, nonlinearmodels andGAMs offer greater flexibility

in capturing complex patterns. GAMs may lack direct interpretability of the coefficients, but

the nonlinear model offers coefficients that can be interpreted in the context of the model’s

structure. In Figure 7.2, the von Bertalanffy model has a clear biological interpretation (see

Section 7.6), while the 3rd-order polynomial model and the GAM are more flexible and can

capture a wider range of shapes (it follows the dips and peaks in the raw data closer). The

2nd-order polynomial does not fit the data as well at very low ages at 20 year, but it is still a

better fit than the linear model.

• Overfitting Concerns: Polynomial regression with high-degree polynomials can lead to over-

fitting, especially when the model complexity exceeds the underlying data patterns. Non-

linear models and GAMs can also overfit if not properly regularised or constrained. These

insights can be seen when we examine the summaries of the regression fits, and can be

formally assessed using cross-validation or information criteria. In Figure 7.2, the 3rd-order

polynomial model seems to capture some of the random variation in the data, which may be

an indication of overfitting. The GAM also seems to capture some of the random variation,

but it is less pronounced than in the 3rd-order polynomial model.

• Data Size and Complexity: For small to moderate-sized datasets with complex nonlinear

relationships, GAMs may be more suitable due to their flexibility and ability to capture

intricate patterns. For simpler relationships or when interpretability is important, nonlinear

regression (with mechanistically-informed parameters) may be preferred. These are not of

concern in Figure 7.2.

• Model Complexity and Assumptions: Polynomial regression assumes a specific polynomial

form for the relationship, which may not hold in practice. Nonlinear models and GAMs are

more flexible and do not always impose strict parametric assumptions (see Section 7.3),
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making them more robust to deviations from the assumed form. A detailed assessment of

the model assumptions and the complexity of the relationship can help guide the choice of

model. We need to add to this our biologist specialist knowledge to make the best choice.

• Computational Considerations: Polynomial regression is relatively simple to implement

and computationally efficient, especially for low-degree polynomials. Nonlinear models and

GAMs may require more computational resources, especially for large datasets or complex

models. Not a concern for the models represented in Figure 7.2.

7.3 Requirements and Assumptions

Polynomial regression, nonlinear regression, and GAMs are built upon the principles of linear re-

gression; therefore, the fundamental assumptions of normality and homoscedasticity of residuals

usually still apply. Specifically, these models assume that the residuals are independent and iden-

tically distributed (i.i.d.), which implies that they are normally distributed with a constant variance

(homoscedasticity). However, the specifics can vary depending on the model and the distribution

of the response variable. Of course, there is also the requirement for the response variable to be

continuous and independent. These assumptions help ensure that the error terms (residuals) in

the model are well-behaved so that reliable inference and predictions can be obtained.

Nuances:

• Polynomial Regression:While a type of nonlinear regression, polynomial models are still

linear in their parameters. This means that they are more bound to the classic regression

assumptions and can be more sensitive to violations.

• GAMs: Offer more flexibility in handling nonlinear relationships. Depending on the distribu-

tions used for the outcome variable and the link functions employed, GAMs can potentially

relax some of the strict normality assumptions.

• NonlinearModels in General: Some truly nonlinear models (like those based on exponential

or logarithmic functions) may have inherently different error structures and may not strictly

require the same assumptions of normality and homoscedasticity. However, these models

come with their own set of assumptions and considerations.

Important considerations:

• Diagnostic Checks: Regardless of the model type, it’s essential to perform residual diagnos-

tics to assess if assumptions are met. Visualisations (e.g., histograms, Q-Q plots, residuals

vs. fitted plots) are well-known tools.

• Transformations: If violations of assumptions are found, data transformation techniques

(e.g., Box-Cox, log) could be considered to improve model validity.

• Generalised LinearModels (GLMs):An important class of models designed to handle various

non-normal responses (e.g., count, binary) while extending the linear modeling framework.

GLMs are good alternative to both polynomial regression and GAMs in certain contexts.

• Mixed models: Linear Mixed Models (LLMs), Generalised Linear Mixed Models (GLMMs),

and Generalised Nonlinear Models (GNLMs) can be used to account for dependencies in

the data, such as repeated measures or hierarchical structures. GAMs also accommodate

mixed data structures.

The rest of this chapter will focus on the practical aspects of fitting polynomial regression

models and nonlinear regressions in R. GAMs will be covered in a separate chapter due to their

unique characteristics and implementation details.
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7.4 R Functions and Packages

7.4.1 Polynomial Regression

To fit a polynomial model in R, use the simple linear regression function lm() to fit the model. The

purpose of poly() is to generate polynomial terms of a specified degree. The basic form is:

poly_model <- lm(y ~ poly(x, degree = 2), data = data)

GLMs are a generalisation of ordinary linear regression that allows for the response variable

to have non-Gaussian error distributions such as one of the exponential family distributions (e.g.,

binomial, Poisson, gamma). These distributions are accommodated via so-called link functions

within the GLM framework. The most common R function for fitting GLMs is glm().

Mixed models that include random and fixed effects (see box ‘Fixed and Random Effects’) are

also available. These are necessary for the analysis of data that have correlations within groups

or hierarchies (e.g., repeated measures1 or the inclusion of grouped variables). Commonly used

are lmer() for LLMs and glmer() for GLMMs. Both functions are in the lme4 package. Another

package that accommodates LLMs is nlme and its lme() function. It has somewhat different

capabilities and syntax compared to lme4.

INFO Fixed and Random Effects

Random effects and fixed effects are used in regression models to account for different

sources of variation in the data.

Fixed effects are variables or factors that represent sources of variation that are of primary

interest in the study or that have a finite and fixed number of levels or categories. These

effects are assumed to have an influence on the mean response. Examples of fixed effects

include:

• Treatment groups in an experiment (e.g., fertiliser A, fertiliser B, control)

• Categorical variables (e.g., sex, age group, species)

• Continuous variables (e.g., time, temperature, concentration)

The coefficients associated with fixed effects are estimated and interpreted as the primary

effects of interest in the model.

Random effects are variables or factors that represent sources of variation that are not of

primary interest but need to be accounted for in the model. These effects are assumed to

be randomly sampled from a larger population, and their levels are theoretically infinite or

too numerous to be modeled as fixed effects. Examples of random effects include:

• Subjects or individuals in a study (e.g., individual plants or animals)

• Clusters or groups (e.g., plots, aquaria, transects)

• Repeated measures or time points within subjects

Random effects are used tomodel the correlation or dependence among observationswithin

the same cluster, subject, or time series. They allow for subject-specific or cluster-specific

1Repeatedmeasures are multiple observations taken on the same subject or unit over time or under different conditions.

Sometimes this is called longitudinal data.
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adjustments to the overall model, accounting for the fact that observations within the same

group are more similar than observations from different groups.

In LMMs and GLMMs, both fixed and random effects are included. The fixed effects repre-

sent the primary effects of interest and the random effects account for the correlation or

dependence within clusters or subjects.

7.4.2 Nonlinear Regression

In R, nonlinear regressions can be performed using the nls() function in the base package. It

uses iterative algorithms to minimise the residual sum of squares and find the best-fit parameters

for the user-specified nonlinear model.

The nls() function is most frequently used to fit user-specified nonlinear functions. The basic

syntax is:

nls_model <- nls(y ~ f(x, theta1, theta2, .....), data = data,

start = list(theta1 = value1, theta2 = value2, .....))

GNLMs extend nonlinear models by allowing the response variable to follow one of the ex-

ponential family distributions, such as binomial, Poisson, or gamma, etc. This is done through a

link function that relates the mean of the distribution to the predictors through the nonlinear

model. GNLMs are fit using maximum likelihood estimation, which is flexible enough to handle

various types of error distribution and link functions. The gnm package rovides the gnm() function

designed for this purpose.

For data with dependencies within groups or hierarchies (such as in longitudinal studies),

NLMMs are available within nlme(). NLMMs incorporate fixed effects (associated with the non-

linear terms) and random effects (to account for correlation and variation within groups).

7.5 Example: Algal Nutrient Uptake Kinetcis

We can measure algal nutrient uptake rates using two types of experiments: multiple flask exper-

iments and perturbation experiments. The fundamental concept underlying both methods is to

introduce a known quantity of nutrients (termed the substrate) into a flask or a series of flasks

and then measure the rate of nutrient uptake (𝑉) at different substrate concentrations ([𝑆]). We
calculate the nutrient uptake rate as the change in nutrient concentration in the flask over a pre-

defined time interval (𝑉 = Δ[𝑆]/Δ𝑡). Consequently, both experiments generate data that relate
the nutrient uptake rate to the corresponding substrate concentration. The primary difference

between the two methods lies in the experimental setup and the data analysis.

In the multiple flask method, we prepare a series of flasks, each containing a different initial

concentration of the substrate nutrient to span the range typically encountered by the specimen

in its natural environment. We then measure the nutrient uptake rate in each individual flask over

a specific time period, for example by taking measurements at the start (𝑡 = 0) and end (𝑡 = 30
minutes) of the incubation. We calculate the change in substrate concentration over this time

interval in each flask to determine the corresponding nutrient uptake rate. The resulting data from

this method therefore consists of the different initial substrate concentrations used in each flask,

paired with their respective measured nutrient uptake rates over the incubation period.
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The perturbationmethod uses a single flask towhichwe add a high initial concentration of the

substrate nutrient, set at a level that is ecologically meaningful and relevant to the study system.

Instead of using multiple flasks, we measure the change in the remaining substrate concentration

at multiple time points within this same flask, for example by taking samples every 10 or 20 min-

utes until all the substrate is depleted, say at 120 minutes. We calculate the change in substrate

concentration between each successive time point to determine the corresponding nutrient up-

take rate over that time interval. The resulting data, therefore, consist of a time series of substrate

concentrations at each measurement time point, paired with the nutrient uptake rates calculated

over the periods between those time points.

The important differences between the multiple flask and perturbation experiments are sum-

marised in Table 7.1.

Table 7.1: Key differences between multiple flask and perturbation experiments.

Feature Multiple Flask Experiments Perturbation Experiments

Experimental

Setup

Multiple flasks, each with different

[𝑆]
Single flask with initial high [𝑆]

Data

Independence

Data points are independent Data points are correlated (repeated

measures)

Analysis Nonlinear least squares regression

(NLS)

Nonlinear mixed model (NLMM)

R Function nls() nlme:::nlme()

Our choice between multiple flask and perturbation experiments depends on our research

questions and experimental constraints. In both methods, we must consider all sources of error

and variability, such as measurement error, the type of nutrient, the physiological state of the alga,

the light intensity, the experimental temperature, and other variables that might affect the uptake

response.

We apply the Michaelis-Menten model (Equation 7.3) to data from multiple flask and per-

turbation experiments to characterise nutrient uptake. Applied to algae, this model assumes an

irreversible uptake process that saturates at high substrate concentrations. It effectively quantifies

key characteristics of the nutrient uptake system, including the maximum uptake rate and the

algae’s affinity for the nutrient.

We use the nls() function to fit the Michaelis-Menten model to the data from multiple flask

experiments. For the perturbation experiment, things are a bit more complicated. This method

includes dependent data points because the measurements are taken from the same flask at

different times, introducing a correlation between observations. This violates the independence

assumption required for standard regression models. To accurately analyse these data, I recom-

mend a nonlinear mixed-effects model implemented in the nlme() function. Mixed-effects models

account for fixed effects (overall trends across all observations) and random effects (variations

specific to individual experimental units, in this case, time points within the same flask). This helps

handle the correlation between repeated measures and produces reliable estimates of the uptake

dynamics within the flask.

The Michaelis-Menten equation is given by:

𝑉𝑖 =
𝑉𝑚𝑎𝑥 ⋅ [𝑆𝑖]
𝐾𝑚 + [𝑆𝑖]

+ 𝜖𝑖 (7.3)

Where:
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• 𝑉𝑖 is the uptake rate at the 𝑖-th observation,
• 𝑉𝑚𝑎𝑥 is the maximum nutrient uptake rate achieved,
• [𝑆𝑖] is the substrate concentration at the 𝑖-th observation,
• 𝐾𝑚 is the Michaelis constant, which represents the substrate concentration at which the
uptake rate is half of 𝑉𝑚𝑎𝑥, and

• 𝜖𝑖 is the error term at the 𝑖-th observation. and

The two parameters of the Michaelis-Menten model are rooted in theory and have ecophysio-

logical interpretations. 𝐾𝑚 is a measure of the alga’s affinity for the nutrient and is determined by
the kinetic constants governing the formation and dissociation of the enzyme-substrate complex

responsible for taking up the nutrient; lower values indicate a higher affinity. 𝑉𝑚𝑎𝑥 represents the
maximum capacity of the alga to utilise the nutrient.

7.5.1 Hypothesis Testing and the Michaelis-Menten Model

Linear vs. Michaelis-Menten Model

Often, we aim to understand the relationship between two variables but we may not yet know

which model best describes this relationship. For instance, in algal nutrient uptake kinetics, both

a linear model and a nonlinear Michaelis-Menten model can be used to describe the relationship

between nutrient uptake rate and substrate concentration. Both models are valid but they have

different interpretations and unique ecophysiological implications. The choice between the two

models depends on the biological system.

• Linearmodels indicate that the uptake process is inherently unsaturated, such aswith the up-

take of ammonium. In this case, the uptake rate continues to increase linearlywith substrate

concentration.

• The Michaelis-Menten model suggests that the uptake rate eventually saturates as the

substrate concentration increases, which is often the case with nitrate.

The key question is: How do we decide which model fits our data best?

The simplest way is to visually inspect the scatter of points on a plot of the 𝑉 vs. [𝑆] data, which
would be part of any exploratory data analysis. If the data exhibit a clear saturation pattern, where

the uptake rate levels off at high substrate concentrations, the Michaelis-Menten model is likely

to provide a better fit. Conversely, if the data show a linear relationship over the observed range

of substrate concentrations, the linear model may be more appropriate.

It is also important to consider the biological plausibility of the models. If there is prior knowl-

edge or theoretical reasons to expect a saturating relationship between the uptake rate and

substrate concentration, the Michaelis-Menten model may be more appropriate, even if both

models provide a similar fit to the data.

Confirmation can be obtained by fitting both models to our data and comparing their perfor-

mance using statistical measures such as the sum of squared residuals (SSR), Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), or log-likelihood test.

To proceedwith the statistical approach,wemust first set hypotheses such as these to compare

the models:

𝐻0: The Michaelis-Menten model does not provide a better fit to the data than a simple linear
model.

In other words, we suggest with the null hypothesis that the relationship between nutrient

uptake rate and the substrate concentration is adequately described by a linear model rather than
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the Michaelis-Menten nonlinear model. The implication is that the uptake rate increases linearly

with substrate concentration, without saturation.

𝐻𝑎: The Michaelis-Menten model provides a significantly better fit to the data than a simple
linear model.

With the alternative hypothesis we propose that the relationship between the nutrient up-

take rate and the substrate concentration is best described by the nonlinear Michaelis-Menten

model, so the uptake rate initially increases with substrate concentration but eventually levels off,

indicating saturation.

To test these hypotheses, we can:

1. Fit both the Michaelis-Menten model and a linear model to the data.

2. Compare the goodness-of-fit of both models using statistical measures such as the SSR, AIC,

or BIC.

3. Perform a model comparison test (such as an F-test or likelihood ratio test) to determine if

the improvement in fit provided by the Michaelis-Menten model is statistically significant

compared to the linear model.

In the above scenario, which is to decide among the linear and Michaelis-Menten models,

hypotheses concerning the parameters of the models are not directly tested as they are not really

of interest (except for estimating their magnitude, perhaps). Instead, the focus is on the overall

goodness-of-fit of the models to the data.

Comparing Two Michaelis-Menten Models

Here, we may be interested in testing whether the parameters 𝑉max and 𝐾𝑚 differ from some
hypothesised values or across different experimental conditions.

In the first instance, we can set up the hypotheses as follows:

𝐻0 ∶ 𝑉max = 𝑉 ∗
max and 𝐾𝑚 = 𝐾∗

𝑚
where 𝑉 ∗

max and 𝐾∗
𝑚 are the hypothesised values (or values from a reference condition) for the

maximum uptake rate and Michaelis constant, respectively.

𝐻𝑎 ∶ 𝑉max ≠ 𝑉 ∗
max or 𝐾𝑚 ≠ 𝐾∗

𝑚
This alternative hypothesis states that at least one of the parameters (𝑉max or 𝐾𝑚) differs from

the hypothesised value.

If the experiment involves different experimental conditions or treatments, we can modify the

hypotheses accordingly. For example, if we want to test whether the parameters differ between

two experimental conditions (A and B), the hypotheses could be:

𝐻0 ∶ 𝑉𝐴
max = 𝑉 𝐵

max and 𝐾𝐴
𝑚 = 𝐾𝐵

𝑚
𝐻𝑎 ∶ 𝑉𝐴

max ≠ 𝑉 𝐵
max or 𝐾𝐴

𝑚 ≠ 𝐾𝐵
𝑚

In this case, the null hypothesis states that the maximum uptake rate and Michaelis constant

are the same for both experimental conditions, while the alternative hypothesis states that at

least one of the parameters differs between the two conditions.

After fitting the Michaelis-Menten model to the data using the nls() or nlme() functions in

R, appropriate statistical tests (e.g., likelihood ratio tests, Wald tests, or other model comparison

techniques) can be performed to evaluate the hypotheses and determine whether the parameter

estimates significantly differ from the hypothesised values or across experimental conditions.
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Figure 7.3: Plot of 𝑉 as a function of [𝑆] for a multiple flask experiment involving seven replicate
flask sets.

7.5.2 Multiple Flask Experiment

Fitting a single model (NLS)

To demonstrate fitting a nonlinearmodel to 𝑉 vs [𝑆] data produced from amultiple flask experiment,
I simulate data across a range of substrate concentrations. We then fit the model to the data using

the nls() function in R. The dataset consists of five replicate flask sets (𝑛 = 5) for each of 13
substrate concentrations. Each set therefore results in independently estimated uptake rates for

the initial nutrient concentrations. The dataset is shown in Table 7.2, and a plot of 𝑉 as a function
of [𝑆] is shown in Figure 7.3.

Table 7.2: Simulated data for a multiple flask experiment on an alga (showing only the top and

bottom three rows).

Replicate flask [S] V

1 0 0.00

2 0 0.00

3 0 0.00

3 30 37.64

4 30 37.97

5 30 35.95

In Figure 7.3, there is a clear indication that the uptake rates plateau at higher substrate con-

centrations, suggesting that fitting a Michaelis-Menten model is advisable. Later, I will compare

this with a linear model for completeness. A central feature of this dataset is that the data were
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collected independently, with each flask set representing a separate experimental unit. There is

no correlation between flasks within a set, and no correlation across the initial substrate con-

centrations. Consequently, the assumption of independence is fully met, allowing the simplest

expression of the nls() function to be used to fit the Michaelis-Menten model to the data.

The Michaelis-Menten model is fit to the data using the nls() function in R. It is specified as:

# Define the model function

mm_fun <- function(S, Vmax, Km) {

Vmax * S / (Km + S)

}

# Fit the nonlinear model Michaelis-Menten model

nls_mod <- nls(V ~ mm_fun(S, Vmax, Km), 1

data = mf_data,

start = c(Vmax = 30, Km = 5)) 2

1 The model formula specifies the Michaelis-Menten equation, with V as the dependent variable

on the left-hand side and S as the independent variable on the right. The model parameters

Vmax and Kmwill be estimated when fitting the model.

2 The start argument provides initial values for the model parameters. The Vmax and Km pa-

rameters are estimated by minimising the sum of squared residuals between the observed

and predicted values of V. The nls() function uses an iterative process to find the best-

fitting values for these parameters, and the starting values improve the success of model

convergence.

Here is the model summary:

summary(nls_mod)

>

> Formula: V ~ mm_fun(S, Vmax, Km)

>

> Parameters:

> Estimate Std. Error t value Pr(>|t|)

> Vmax 49.2444 0.8924 55.18 <2e-16 *﯂﯂﯂

> Km 9.4953 0.4474 21.22 <2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 1.092 on 63 degrees of freedom

>

> Number of iterations to convergence: 4

> Achieved convergence tolerance: 4.705e-07

The above output provides the estimates for 𝑉max and 𝐾𝑚, along with their standard errors,
t-values, and p-values:

• The estimated maximum uptake rate (𝑉max) is approximately 49.24 𝜇𝑀𝑁𝑔−1ℎ𝑟−1 and the
small standard error associated with this parameter (0.89) indicates a precise estimate. The
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Figure 7.4: Plot of the Michaelis-Menten model fitted to the data in Figure 7.3. The vertical and

horizontal dashed lines indicate the estimated 𝐾𝑚 and 𝑉𝑚𝑎𝑥 values, respectively.

t-value (55.18) is very high, and the corresponding p-value is extremely small (<0.0001),

indicating that 𝑉max is highly significantly different from zero.

• The estimatedMichaelis constant (𝐾𝑚) is approximately 9.50 𝜇𝑀 and its standard error (0.45)
is also small, suggesting a precise estimate. The t-value (21.22) and the very small p-value

(<0.0001) indicate that 𝐾𝑚 is also highly significantly different from zero.
• The residual standard error is 1.10 on 63 degrees of freedom, indicating the average devia-

tion of the observed uptake rates from the fitted model values.

• The model converged in 4 iterations with a very small convergence tolerance, indicating a

good fit and stability of the model.

LIGHTBULB Results

TheMichaelis-Menten parameters, maximum uptake rate (𝑉max) and half-saturation constant

(𝐾𝑚), were estimated using nonlinear regression (Figure 7.4). The estimated 𝑉max was 49.24

𝜇M N g−1 hr−1 (SE = 0.89, 𝑡 = 55.18, 𝑝 < 0.0001), and the estimated 𝐾𝑚 was 9.50 𝜇M (SE

= 0.45, 𝑡 = 21.22, 𝑝 < 0.0001). Both parameters were significantly different from zero. The
model fit was good, converging in 3 iterations with a residual standard error of 1.10 (63

degrees of freedom).

The text is clear and concise, but here are a few minor changes for improved readability and

precision:

Assumption tests Since these data are simulated and drawn from a normal distribution with

equal variances across the range of substrate concentrations, the assumptions of homoscedasticity

and normality of residuals are inherently met. In this example, we fit the model solely to obtain

estimates of the Michaelis-Menten parameters, rather than to make predictions, inferences, or

calculate confidence intervals. Therefore, assumption tests are not critical at this stage. We will
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formally test assumptions in Section 7.5.2when comparing the effects of experimental treatments

on kinetic parameters.

Is the Michaelis-Menten model a better fit than a linear model?

In Section 7.5.1, we pose a hypothesis that requires comparing a linear model to a Michaelis-

Menten model fitted to the same data. Figure 7.4 indicates the nonlinear model indeed provides

a very good fit but in some situations this distinction may be less clear and require verification.

Let us fit a linear model to the above data and compare it to the Michaelis-Menten model.

# Fit the linear model

lm_mod <- lm(V ~ S, data = mf_data)

summary(lm_mod)

>

> Call:

> lm(formula = V ~ S, data = mf_data)

>

> Residuals:

> Min 1Q Median 3Q Max

> -9.354 -4.791 0.580 4.948 8.293

>

> Coefficients:

> Estimate Std. Error t value Pr(>|t|)

> (Intercept) 6.46005 0.98044 6.589 1.03e-08 *﯂﯂﯂

> S 1.29488 0.06683 19.376 < 2e-16 *﯂﯂﯂

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>

> Residual standard error: 5.13 on 63 degrees of freedom

> Multiple R-squared: 0.8563, Adjusted R-squared: 0.854

> F-statistic: 375.4 on 1 and 63 DF, p-value: < 2.2e-16

The linear model summary shows that the slope and intercept are significantly different from

zero, indicating a good fit. The 𝑅2 value is 0.86, which is very high, suggesting that the linear
model explains 86% of the variance in the data. The residual standard error is 5.13, which is higher

than the Michaelis-Menten model, indicating a worse fit. We can test the difference between the

models formally by examining the AIC, BIC, or SSR, and the likelihood ratio test.

AIC(lm_mod, nls_mod)

> df AIC

> lm_mod 3 400.9933

> nls_mod 3 199.8814

BIC(lm_mod, nls_mod)

> df BIC

> lm_mod 3 407.5164
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> nls_mod 3 206.4046

# Calculate the sum of squared residuals (SSR)

sum(residuals(lm_mod)^2)

> [1] 1657.938

sum(residuals(nls_mod)^2)

> [1] 75.13611

anova(lm_mod, nls_mod)

> Analysis of Variance Table

>

> Response: V

> Df Sum Sq Mean Sq F value Pr(>F)

> S 1 9879.9 9879.9 375.43 < 2.2e-16 *﯂﯂﯂

> Residuals 63 1657.9 26.3

> ---

> Signif. codes: 0 '﯂﯂﯂﯂﯂' 0.001 '﯂﯂﯂' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The AIC, BIC, and SSR values for the Michaelis-Menten model are lower than those for the

linear model. Low is good, and we conclude that the Michaelis-Menten model is a better fit. The

likelihood ratio test also shows that the Michaelis-Menten model is significantly better than the

linear model (d.f. = 1, 𝐹 = 375.43, 𝑝 < 0.0001). Therefore, we can conclude that the Michaelis-
Menten model is the most appropriate model for these data and that the rate of nutrient uptake

by the seaweed (in this example) is saturated at high nutrient concentrations.

Comparing treatment effects (NLS and NLMM)

Experiments are seldom as simple as the one above. To develop our example further, consider

an experiment designed to assess whether an experimental treatment, such as light intensity or

seawater temperature, affects the nutrient uptake rate of a seaweed. It is biologically plausible to

expect that each treatment will result in unique 𝑉𝑚𝑎𝑥 and/or 𝐾𝑚 values. For example, we know that
the uptake rate of nitrate (NO3

– ) might increase at higher light intensities and higher temperatures.

Therefore, our hypothesis for this experiment is that the nutrient uptake kinetics of the seaweed

is influenced by the treatment, as more formally stated in Section 7.5.1. To test this hypothesis, we

fit a Michaelis-Menten model so that it allows estimates of 𝑉𝑚𝑎𝑥 and 𝐾𝑚 to vary among treatment
groups.

The data for a multiple flask experiment with a treatment effect comprised of three levels

are provided in Table 7.3. Except for a new variable (treatment), the data are in all other respects

identical to those in Section 7.5.2.

Table 7.3: Simulated data with three treatment levels for a multiple flask experiment on a seaweed

species.

Treatment Replicate flask [S] V

Treatment 1 1 0 0.00

Treatment 1 2 0 0.00
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Treatment 1 3 0 0.00

Treatment 3 3 30 17.19

Treatment 3 4 30 16.66

Treatment 3 5 30 16.00

Option 1 The nls() function in R does not handle factor variables directly, which means we

cannot include the treatment variable as a factor in the model formula. To address this limitation,

we fit the nls()model separately for each treatment group. This approach allows each treatment

to have its own 𝑉max and 𝐾𝑚 values, effectively accommodating the variability in the Michaelis-
Menten parameters across treatments.

In addition to fitting separate models for each treatment, we also fit a global model (a null

model) to all the data. The global model assumes that the effect of the experimental treatment

is negligible, meaning that all treatments share the same 𝑉max and 𝐾𝑚. This global fit serves as a
baseline for comparison.

To determine whether the Michaelis-Menten parameters significantly differ among the treat-

ment groups, we perform a likelihood ratio test. The likelihood ratio test compares the fit of the

global model (where parameters are shared across treatments) to the combined fit of the sep-

arate models (where parameters vary by treatment). The test statistic is the difference in the

log-likelihoods of the two models, which follows a 𝜒2 distribution with degrees of freedom equal
to the difference in the number of parameters between the two models.

# Fit separate models

separate_models <- mf_data2 ||>

group_by(trt) ||>

nest() ||>

mutate(model = map(data, ~nls(V ~ mm_fun(S, Vmax, Km),

data = .x,

start = list(Vmax = 40, Km = 10))))

# Extract model summaries of separate models

model_summaries <- separate_models||>

mutate(summary = map(model, broom:::tidy))

# Display summaries of separate models

model_summaries ||>

select(trt, summary) ||>

unnest(summary)

> # A tibble: 6 x 6

> # Groups: trt [3]

> trt term estimate std.error statistic p.value

> <fct> <chr> <dbl> <dbl> <dbl> <dbl>

> 1 Treatment 1 Vmax 49.2 0.958 51.4 3.94e-53

> 2 Treatment 1 Km 9.55 0.482 19.8 9.50e-29

> 3 Treatment 2 Vmax 39.4 0.865 45.5 6.66e-50

> 4 Treatment 2 Km 7.54 0.481 15.7 2.14e-23

> 5 Treatment 3 Vmax 19.2 0.558 34.5 1.34e-42

> 6 Treatment 3 Km 5.87 0.560 10.5 1.97e-15
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# Fit the global model

global_model <- nls(V ~ mm_fun(S, Vmax, Km),

data = mf_data2,

start = list(Vmax = 45, Km = 9))

# Extract log-likelihoods and degrees of freedom

logLik_global <- logLik(global_model)

df_global <- attr(logLik_global, "df")

# Combined log-likelihoods and degrees of freedom

logLik_separate <- sum(sapply(separate_models$model, logLik))

df_separate <- sum(sapply(separate_models$model,

function(m) attr(logLik(m), "df")))

# Perform the likelihood ratio test

lrt_stat <- 2 * (logLik_separate - logLik_global)

p_value <- pchisq(lrt_stat, df = df_separate - df_global,

lower.tail = FALSE)

# Display results

cat("Global model log-likelihood:", logLik_global, "\n")

> Global model log-likelihood: -620.5374

cat("Separate models log-likelihood:", logLik_separate, "\n")

> Separate models log-likelihood: -300.2111

cat("Degree of freedom:", df_separate - df_global, "\n")

> Degree of freedom: 6

cat("Likelihood ratio test statistic:", lrt_stat, "\n")

> Likelihood ratio test statistic: 640.6525

cat("p-value:", p_value, "\n")

> p-value: 3.953134e-135

The results of the likelihood ratio test indicate whether the variation in 𝑉max and 𝐾𝑚 among the
treatments is statistically significant. If the test is significant, it suggests that theMichaelis-Menten

parameters differ across treatments. We interpret the results as follows:

• The log-likelihood value (-620.7498) for the global model, indicating the fit of the model

with shared parameters.

• The combined log-likelihood value (-313.1862) for the separate models, indicating the fit of

the models with parameters varying by treatment.

• The calculated test statistic (615.1273) for the likelihood ratio test on 6 degrees of freedom.

• The p-value of the test is less than 0.0001 and provides strong evidence that 𝑉max and 𝐾𝑚
differ significantly among the treatment groups.

LIGHTBULB Results

The analysis aimed to determine if the Michaelis-Menten parameters 𝑉max and 𝐾𝑚 signifi-
cantly differed among the three experimental treatments. This was evaluated by fitting a
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global model with shared 𝑉max and 𝐾𝑚 values across all treatments and comparing it to a
model allowing separate 𝑉max and 𝐾𝑚 estimates for each treatment. The log-likelihood value
for the global model, which assumes shared 𝑉max and 𝐾𝑚 values across all treatments, was
-620.75, indicating the fit of the model with common parameters. In contrast, the combined

log-likelihood value for the separate models, which allow 𝑉max and 𝐾𝑚 to vary by treatment,
was -313.19, indicating the fit of the models with treatment-specific parameters. The calcu-

lated test statistic for the likelihood ratio testwas 615.13 (d.f. = 6, p < 0.001), providing strong

evidence that the Michaelis-Menten parameters 𝑉max and 𝐾𝑚 differ significantly among the
treatment groups. Consequently we estimate a 𝑉𝑚𝑎𝑥 of 49.2 ± 0.96, 39.4 ± 0.87 𝜇M N g−1
hr−1 and 18.9 ± 0.65 and a 𝐾𝑚 of 9.55 ± 0.48, 7.54 ± 0.48 and 5.50 ± 0.64 𝜇M for treatments
1, 2 and 3 respectively.

Option 2 If Option 1 seems cumbersome, we can fit a NLMM using the nlme package instead.

This package allows us to fit a mixed model with random effects for each treatment group. In

this model, the fixed effects are the Michaelis-Menten parameters 𝑉max and 𝐾𝑚, which vary by
treatment, while the random effects are the replicate-specific intercepts. Thus, the cumbersome

nls() formulation is replaced by the compact but more fiddly nlme() model specification. Pick

your poison. The model is specified as follows:

# Fit the model with the same parameters for both treatments

# Starting values for Vmax and Km

start_vals <- c(Vmax = 50, Km = 10)

global_model <- nlme(

V ~ mm_fun(S, Vmax, Km),

data = mf_data2,

fixed = Vmax + Km ~ 1, 1

random = Vmax ~ 1 | trt/rep, 2

start = start_vals

)

# Fit the model with parameters varying by treatment

# Starting values for Vmax and Km for each treatment

start_vals <- c(Vmax1 = 50, Vmax2 = 40, Vmax3 = 30,

Km1 = 10, Km2 = 10, Km3 = 5) 3

separate_models <- nlme(

V ~ mm_fun(S, Vmax, Km),

data = mf_data2,

fixed = list(Vmax ~ trt, Km ~ trt), 4

random = Vmax ~ 1 | trt/rep,

start = start_vals

)

1 The fixed effects indicate that both 𝑉max and 𝐾𝑚 are fixed (do not vary) across treatments.
2 The random effects indicate that the 𝑉max parameter varies by treatment and replicate.

3 The starting values for the 𝑉max and 𝐾𝑚 parameters are specified for each treatment group.
Becausewe are nowfitting a separate model for each treatment, we need to provide starting

values for each treatment.

4 The fixed effects now indicate that both 𝑉max and 𝐾𝑚 vary by treatment.
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The estimated parameters for the global model and the separate models can be extracted

using the summary() function:

# Extract the estimated parameters (abbreviated output)

# summary(global_model) # for verbose output

summary(global_model)$tTable

> Value Std.Error DF t-value p-value

> Vmax 36.248519 6.287216 179 5.765432 3.504878e-08

> Km 8.271727 0.304345 179 27.178780 1.952829e-65

# Extract the estimated parameters (abbreviated output)

# summary(separate_models) # for verbose output

summary(separate_models)$tTable

> Value Std.Error DF t-value p-value

> Vmax.(Intercept) 49.199643 0.9498953 175 51.794808 4.546825e-108

> Vmax.trtTreatment 2 -9.879910 1.2312719 175 -8.024150 1.422499e-13

> Vmax.trtTreatment 3 -29.971535 1.1529098 175 -25.996427 5.425758e-62

> Km.(Intercept) 9.542071 0.4707903 175 20.268197 8.782004e-48

> Km.trtTreatment 2 -2.027313 0.6350017 175 -3.192611 1.671900e-03

> Km.trtTreatment 3 -3.689268 0.7898830 175 -4.670651 5.961284e-06

The log-likelihood ratio test can then easily be performed using the anova() function, which

compares the global model with the separate models:

anova(global_model, separate_models)

> Model df AIC BIC logLik Test L.Ratio p-value

> global_model 1 5 657.9763 674.3413 -323.9882

> separate_models 2 9 621.5038 650.9608 -301.7519 1 vs 2 44.47252 <.0001

Again, the results of the likelihood ratio test indicate that the variation in 𝑉max and 𝐾𝑚 among
the treatments is statistically significant (log-likelihood = 45.20, p < 0.0001). The AIC values can

also be used to compare the models, with lower AIC values indicating a better fit. In this case,

the separate models have a lower AIC value (644.28), suggesting that they provide a better fit to

the data than the global model (681.479). The data fitted with the global and separate models is

presented in Figure 7.6.

Assumption tests To complete our example comparing the Michaelis-Menten parameters

among treatments, let’s confirm the assumptions by examining the residuals. Residuals in non-

linear regression models have the same interpretation as in linear models, and therefore, the

assumption tests available for linear models can be applied here as well. For instance, we can

use the shapiro.test() function to check the normality of residuals, as shown below, and the

hist() and plot() functions for diagnostic plots. In real-world data, it is advised to verify these

assumptions before accepting the analysis and drawing conclusions from the nonlinear regression

model. Let’s check the normality of residuals for each treatment and plot the residuals to check

for normality and homoscedasticity (Figure 7.5).
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Figure 7.5: Histograms (A) of residuals and plots of residuals vs. the fitted values (B) for residuals

for the three treatments in the multiple-flask experiment.

# Add residuals and fitted information to the data frame

mf_data2$residuals_separate <- residuals(separate_models)

mf_data2$fitted_values_separate <- fitted(separate_models)

# Perform the Shapiro-Wilk test for each treatment

shapiro.test(mf_data2$residuals_separate[mf_data2$trt === "Treatment 1"])

>

> Shapiro-Wilk normality test

>

> data: mf_data2$residuals_separate[mf_data2$trt === "Treatment 1"]

> W = 0.976, p-value = 0.2374

shapiro.test(mf_data2$residuals_separate[mf_data2$trt === "Treatment 2"])

>

> Shapiro-Wilk normality test

>

> data: mf_data2$residuals_separate[mf_data2$trt === "Treatment 2"]

> W = 0.97125, p-value = 0.1344

shapiro.test(mf_data2$residuals_separate[mf_data2$trt === "Treatment 3"])

>

> Shapiro-Wilk normality test

>

> data: mf_data2$residuals_separate[mf_data2$trt === "Treatment 3"]

> W = 0.95091, p-value = 0.01177

The Shapiro-Wilk test results indicate that the residuals are normally distributed forTreatments

1 and 2 (p > 0.05) but not for Treatment 3 (p < 0.05). However, the histograms in Figure 7.5 show
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that the residuals are approximately normally distributed for all treatment groups, with the median

roughly in the middle of the distribution in each case. This apparent discrepancy can be explained

by the sensitivity of the Shapiro-Wilk test to sample size. With large sample sizes, even minor

deviations from normality can be detected as statistically significant. In situations such as this one,

I suggest that it is important to consider the sample size and visual inspection of the data when

interpreting the results of normality tests. Here, given the relatively large sample size and the visual

assessment of the histograms, we can reasonably conclude that the residuals are approximately

normally distributed for all treatment groups.

Another normality tests such as the Kolmogorov-Smirnov (K-S) test might be less sensitive to

sample size and could be considered for comparison. The K-S test is a non-parametric statistical

test that is used to determine if a sample comes from a specific probability distribution. Here I

use it to test if a sample follows a normal distribution (pnorm), but it can also be used to test

against other theoretical distributions or to compare two empirical distributions. The K-S test can

be performed using the ks.test(), as shown below.

perform_ks_test <- function(data, treatment) {

ks.test(data$residuals_separate[data$trt === treatment], "pnorm",

mean = mean(data$residuals_separate[data$trt === treatment]),

sd = sd(data$residuals_separate[data$trt === treatment]))

}

# Perform the test for each treatment group

perform_ks_test(mf_data2, "Treatment 1")

>

> Asymptotic one-sample Kolmogorov-Smirnov test

>

> data: data$residuals_separate[data$trt === treatment]

> D = 0.10658, p-value = 0.4513

> alternative hypothesis: two-sided

perform_ks_test(mf_data2, "Treatment 2")

>

> Asymptotic one-sample Kolmogorov-Smirnov test

>

> data: data$residuals_separate[data$trt === treatment]

> D = 0.1246, p-value = 0.2652

> alternative hypothesis: two-sided

perform_ks_test(mf_data2, "Treatment 3")

>

> Asymptotic one-sample Kolmogorov-Smirnov test

>

> data: data$residuals_separate[data$trt === treatment]

> D = 0.14151, p-value = 0.148

> alternative hypothesis: two-sided

We see that the K-S test indicates that the residuals are normally distributed for all treatment

groups (p > 0.05). As already noted, this test is less sensitive to sample size than the Shapiro-Wilk

test, and the results are consistent with the visual assessment of the histograms.

We should also check for homoscedasticity (here I use the Levene test) and a plot of residuals
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Figure 7.6: Plot of the Michaelis-Menten model fitted to the data in Table 7.3. Fits are provided

for the separate models and the global model.

versus fitted values.

# Perform the Levene test

car:::leveneTest(residuals_separate ~ trt, data = mf_data2)

> Levene's Test for Homogeneity of Variance (center = median)

> Df F value Pr(>F)

> group 2 1.4933 0.2272

> 192

The Levene test shows that the variances are the same across the three treatments and this is

confirmed by the plot of residuals against the fitted values in Figure 7.5.

LIGHTBULB Results

Michaelis-Menten models were fitted to nutrient uptake data across three experimental

treatments to investigate the effects of the treatments on seaweed nutrient kinetics. A

global model, assuming shared kinetic parameters (𝑉𝑚𝑎𝑥 and 𝐾𝑚) across all treatments, was
compared to a model with separate parameters for each treatment. The model allowing

treatment-specific parameters (AIC = 644.3) provided a significantly better fit to the data

than the global model (AIC = 681.5), a finding confirmed by the log-likelihood test (log-

likelihood ratio = 45.20, d.f. = 4, p < 0.0001). As the assumption tests do not indicate any

cause for concern regarding the distribution of residuals, we conclude that the experimental

treatments significantly influenced the nutrient uptake kinetics of the seaweed (Figure 7.6).

Specifically, all three treatments exhibited unique combinations of 𝑉𝑚𝑎𝑥 and 𝐾𝑚 values (Treat-
ment 1: 𝑉𝑚𝑎𝑥 = 49.2, 𝐾𝑚 = 9.5; Treatment 2: 𝑉𝑚𝑎𝑥 = 39.3, 𝐾𝑚 = 7.5; Treatment 3: 𝑉𝑚𝑎𝑥 =
19.0, 𝐾𝑚 = 5.5). These findings support the hypothesis that nutrient uptake kinetics in this
seaweed species are sensitive to environmental perturbations.



7.5. EXAMPLE: ALGAL NUTRIENT UPTAKE KINETCIS 115

7.5.3 The Perturbation Method (NLMM)

The data for this example is by Smit (2002). A perturbation experiment was conducted to deter-

mine the nutrient uptake rate versus nutrient concentration of the red seaweed, Gracilaria sp. The

experiment involved flasks, initially enriched to approximately 55 μM nitrate, sampled 16 times

over approximately 2.5 hours. The uptake rates were measured under three rates of water move-

ment (treatments): low, medium, and high. Each treatment had three replicate flasks (Table 7.4).

The primary objective was to determine if the Michaelis-Menten parameters significantly differ

among the three levels of water movement, and we must state a hypothesis similar to those in

Section 7.5.1.

Table 7.4: Simulated data for a multiple flask experiment on an alga (showing only the top and

bottom three rows).

Replicate flask Treatment V [S]

1 low 10.8 60.2

2 low 10.0 61.1

3 low 14.1 60.8

1 high 0.0 0.1

2 high 0.0 0.1

3 high 0.0 0.1

For the reasons discussed in Section 7.5, we will use a nonlinear mixed effects model, nlme(),

to analyse these data. Models such as these can be quite challenging to fit. There are several things

we have to deal with. First and most obviously is the fact that the data are repeated measures,

and the residuals may be correlated. Second, the flasks are nested within the treatment levels,

and we need to account for this in the model. Finally, we need to account for the possibility that

the Michaelis-Menten parameters may vary among the treatment levels—in fact, we want to test

this! Here is the model:

# Determine the number of levels in the factor 'trt'

num_levels <- length(levels(mm_data$trt))

# Starting values for the fixed parameters

# (one set for each level of 'trt')

start_vals <- list(fixed = c(Vmax = rep(max(mm_data$V), num_levels),

Km = rep(median(mm_data$S), num_levels)))

nlme_mod2 <- nlme(V ~ mm_fun(S, Vmax, Km),

data = mm_data,

fixed = Vmax + Km ~ trt, 1

random = Vmax + Km ~ 1 | flask, 2

start = start_vals,

method = "REML")

1 The fixed argument specifies that the Michaelis-Menten parameters Vmax and Km are fixed

effects that vary among the treatment levels, and a grouping variable (trt) is used to specify
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the levels of the treatment factor.

2 The random argument specifies that the Michaelis-Menten parameters Vmax and Km are ran-

dom effects that vary among the replicate flasks.

This model brings us closer to our goal, but there are some notable omissions. The specification

allows the Michaelis-Menten parameters to vary among the treatment levels, which is central to

our hypothesis. We have also accounted for the replication structure of the data, recognising that

random variations may arise not due to the treatment levels but due to the replicate flasks.

However, we have not accounted for the central feature of a perturbation experiment, which

is the correlation structure of the residuals. We must deal with the fact that the residuals may be

correlated due to the repeated measures nature of the data. Additionally, we have omitted the

nesting of the flasks within the treatment levels.

Let’s update our model accordingly:

nlme_mod3 <- nlme(V ~ mm_fun(S, Vmax, Km),

data = mm_data,

fixed = list(Vmax ~ trt, Km ~ trt),

random = Vmax ~ 1 | trt/flask, 1

groups = ~ trt/flask, 2

correlation = corAR1(form = ~ 1 | trt/flask), 3

start = start_vals,

method = "REML")

1 The random argument specifies that the Michaelis-Menten parameter Vmax is a random effect

that varies among the replicate flasks nested within the treatment levels.

2 The groups argument specifies that the replicate flasks are nested within the treatment levels.

3 The correlation argument specifies that the residuals have a first-order autoregressive cor-

relation structure. This structure assumes that the correlation between residuals decreases

exponentially with the time lag between observations. Flask is nested within treatment.

If we are not convinced that nlme_mod3 is the best model, we can compare it to nlme_mod2

using a likelihood ratio test. It is used to compare the fit of two models, where one model is a

special case of the other. The test statistic is the difference in the log-likelihoods of the twomodels,

and the null hypothesis is that the simpler model is the best fit.

anova(nlme_mod2, nlme_mod3)

> Model df AIC BIC logLik

> nlme_mod2 1 10 637.2782 665.6411 -308.6391

> nlme_mod3 2 10 632.1053 660.4681 -306.0527

# Likelihood ratio test

lrt_stat <- -2 * (logLik(nlme_mod2) - logLik(nlme_mod3))

# Determine degrees of freedom and p-value

df_diff <- attr(logLik(nlme_mod3), "df") - attr(logLik(nlme_mod2), "df")

p_value <- pchisq(lrt_stat, df = df_diff, lower.tail = FALSE)

print(paste("LRT statistic:", lrt_stat))



7.5. EXAMPLE: ALGAL NUTRIENT UPTAKE KINETCIS 117

> [1] "LRT statistic: 5.17293584867423"

print(paste("Degrees of freedom:", df_diff))

> [1] "Degrees of freedom: 0"

print(paste("P-value:", p_value))

> [1] "P-value: 0"

The likelihood ratio test indicates that nlme_mod3 is a better fit than nlme_mod2 (p < 0.001).

This result suggests that the Michaelis-Menten parameters vary among the treatment levels, and

the residuals have a first-order autoregressive correlation structure.

summary(nlme_mod3)

> Nonlinear mixed-effects model fit by REML

> Model: V ~ mm_fun(S, Vmax, Km)

> Data: mm_data

> AIC BIC logLik

> 632.1053 660.4681 -306.0527

>

> Random effects:

> Formula: Vmax ~ 1 | trt

> Vmax.(Intercept)

> StdDev: 0.00837941

>

> Formula: Vmax ~ 1 | flask %in% trt

> Vmax.(Intercept) Residual

> StdDev: 0.0002584018 2.731378

>

> Correlation Structure: AR(1)

> Formula: ~1 | trt/flask

> Parameter estimate(s):

> Phi

> 0.2048944

> Fixed effects: list(Vmax ~ trt, Km ~ trt)

> Value Std.Error DF t-value p-value

> Vmax.(Intercept) 15.394469 1.082697 118 14.218627 0.0000

> Vmax.trtlow -1.660245 2.381505 118 -0.697141 0.4871

> Vmax.trtmed -3.555246 1.503682 118 -2.364361 0.0197

> Km.(Intercept) 5.381378 1.873000 118 2.873133 0.0048

> Km.trtlow 11.448682 8.044641 118 1.423144 0.1573

> Km.trtmed -0.381246 3.147606 118 -0.121123 0.9038

> Correlation:

> Vm.(I) Vmx.trtl Vmx.trtm Km.(I) Km.trtl

> Vmax.trtlow -0.455

> Vmax.trtmed -0.720 0.327

> Km.(Intercept) 0.726 -0.330 -0.523

> Km.trtlow -0.169 0.876 0.122 -0.233

> Km.trtmed -0.432 0.196 0.734 -0.595 0.139

>
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> Standardized Within-Group Residuals:

> Min Q1 Med Q3 Max

> -2.0222398 -0.7529003 -0.2362146 0.4364407 3.2055101

>

> Number of Observations: 132

> Number of Groups:

> trt flask %in% trt

> 3 9

7.6 Example: The Growth Rate of Fish (NLMM)

The von Bertalanffy model (Equation 7.4) is used to describe the growth patterns of animals over

time. For example, in a fish growth study, we measure the length of individual fish at regular

intervals as the fish ages.We can estimate growth parameters specific to the fish species by fitting

the von Bertalanffy model to these length-at-age data

The model is given by:

𝐿(𝑡) = 𝐿∞ (1 − 𝑒−𝑘(𝑡−𝑡0)) (7.4)

Where:

• 𝐿(𝑡) is the length of the fish at time 𝑡.
• 𝐿∞ is the asymptotic length, representing the theoretical maximum length that the individual
would reach if it grew indefinitely.

• 𝑘 is the growth coefficient, indicating the rate at which the growth of the fish approaches
its maximum size. A higher 𝑘 value means it reaches its asymptotic length more quickly.

• 𝑡0 is the hypothetical age at which the individual’s length would be zero according to the
model.

𝐿∞ (the asymptotic length) represents the length towards which the individual grows as time
(𝑡) approaches infinity. The concept behind 𝐿∞ is that as the fish ages, its growth rate slows down
and eventually approaches zero, with its length nearing the asymptotic value 𝐿∞. 𝑘 (the growth
rate coefficient) determines how quickly the fish reaches its asymptotic length. Physiologically, 𝑘
reflects the metabolic rates and general fitness of the fish, while ecologically, it can be influenced

by environmental factors such as food availability and temperature. Lastly, 𝑡0 (the theoretical age
at zero length) is not directly observable in practice but provides a useful way to shift the growth

curve along the time axis to provide a better fit to the data, especially in the early developmental

stages.

Consider a studywhere the lengths of 30 Atlantic Cod, Gadus morua, in captivity are measured

twice a year from hatching to 15 years. This creates a longitudinal dataset with repeated length

measurements for each fish over time. In this experiment, we will focus on the growth patterns of

individual fish, assuming they were raised under identical conditions. This allows us to attribute

any growth differences to inherent biological variation among the fish. Apart from the repeated

measures on individual fish, we will assume that the data are independent in all other respects.

The longitudinal nature of the data requires that we use appropriate statistical methods that

account for the correlation among the repeated measures. We will use a nonlinear mixed-effects

regression for the data in Table 1.
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Figure 7.7: Plot of growth data measured in 30 Atlantic cod, Gadus morua.

Table 7.5: The Atlantic Cod data set with 30 fish and 15 years of growth data (showing only the

top and bottom three rows).

Fish ID Age (yr) Length (cm)

1 0.0 5.3

1 0.5 16.8

1 1.0 27.2

30 14.0 115.4

30 14.5 116.0

30 15.0 116.5

A plot of the data is shown in Figure 7.7; here, each line represents the growth trajectory of

an individual fish over time.

> List of 1

> $ legend.position: chr "none"

> - attr(*, "class")= chr [1:2] "theme" "gg"

> - attr(*, "complete")= logi FALSE

> - attr(*, "validate")= logi TRUE

Wewill fit the von Bertalanffy growth model to the data using nlme:::nlme() as follows, and

the output is provided:

# von Bertalanffy growth function

vb_growth <- function(age, L_inf, k, t0) {
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L_inf * (1 - exp(-k * (age - t0)))

}

# Define the nonlinear mixed-effects model

nlme_model <- nlme(Length ~ vb_growth(Age, L_inf, k, t0),

data = vb_data,

fixed = L_inf + k + t0 ~ 1, 1

random = L_inf + k ~ 1 | Fish_ID, 2

groups = ~ Fish_ID, 3

correlation = corAR1(form = ~ 1), 4

start = c(L_inf = 100, k = 0.2, t0 = -0.5))

# Print the summary of the model

summary(nlme_model)

> Nonlinear mixed-effects model fit by maximum likelihood

> Model: Length ~ vb_growth(Age, L_inf, k, t0)

> Data: vb_data

> AIC BIC logLik

> -2833.361 -2794.679 1424.68

>

> Random effects:

> Formula: list(L_inf ~ 1, k ~ 1)

> Level: Fish_ID

> Structure: General positive-definite, Log-Cholesky parametrization

> StdDev Corr

> L_inf 1.857032547 L_inf

> k 0.008341198 -0.139

> Residual 0.555742464

>

> Correlation Structure: AR(1)

> Formula: ~1 | Fish_ID

> Parameter estimate(s):

> Phi

> 0.9972623

> Fixed effects: L_inf + k + t0 ~ 1

> Value Std.Error DF t-value p-value

> L_inf 124.80230 0.3551041 898 351.4527 0

> k 0.20042 0.0015299 898 131.0050 0

> t0 -0.20415 0.0040574 898 -50.3164 0

> Correlation:

> L_inf k

> k -0.137

> t0 -0.260 -0.007

>

> Standardized Within-Group Residuals:

> Min Q1 Med Q3 Max

> -2.2053004 -0.7552048 0.2402975 0.4902483 1.9150860
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Figure 7.8: Fit of the von Bertalanffy model to experimental data obtained from 30 Atlantic Cod

individuals.

>

> Number of Observations: 930

> Number of Groups: 30

1 The fixed effects are the parameters of the von Bertalanffy growth model which are invariant

among fish.

2 The random effects are the asymptotic length and growth rate to account for the intrinsic

differences among fish.

3 The grouping variable is the fish ID.

4 The correlation structure is autoregressive of order 1 to account for the correlation among

repeated measures within the same fish, the ~ 1 indicates that the order of the observations

in the data must be used along which measurements are serially correlated, and since no

grouping variable is provided, all fish will have the same correlation structure.

7.7 Scrathpad

7.7.1 To include in the article

• Assumptions: Not necessary for simply estimating model parameters, but if the model is

used for prediction or inference, it is important to state the assumptions of the model (e.g.,

linearity, homoscedasticity, independence of residuals) and test them.

• i.i.d: The residuals are assumed to be independent and identically distributed (i.i.d.), which is

a common assumption in linear regression models. For a normal distribution, this is written

as 𝜖𝑖 ∼ 𝑁(0, 𝜎2), where 𝜎2 is the variance of the residuals.



122 CHAPTER 7. NONLINEAR MODELS

7.7.2 Contuinuing the MMmodel



Chapter 8

Regularisation Techniques

Regularisation techniques are invaluable when dealing with complex datasets or situations where

traditional methods may fall short. They are used to enhance model stability, improve predictive

performance, and increase interpretability, especially when working with multi-dimensional data

in multiple linear regression models and multivariate analyses. Regularisation addresses several

common challenges in statistical modelling: i) multicollinearity, ii) variable selection, iii) overfitting,

and iv) model simplification.

Environmental datasets often contain many independent variables, and it is likely that only

some of them are necessary to explain the phenomenon of interest. Variable selection is the

process of identifying the most important predictors to include in a model. This can be achieved

through the application of specialist, domain-specific knowledge, or through statistical or data-

driven approaches. Regularisation is an example of the latter, as it can automatically identify the

most relevant predictors on statistical grounds, serving as an alternative to traditional variable

selection methods such as Variance Inflation Factor (VIF) and stepwise selection (see Section 5.6.4

and Section 5.6.5).

Overfitting occurs when a model ‘explains’ the noise in data together with the underlying

pattern, which might happen when the model has too many predictors relative to the number of

observations. This may also result when variable selection has not been sufficiently addressed. An

overfit model performs exceptionally well on training data but fails to generalise to new, unseen

data. Additionally, having toomany predictors can lead tomulticollinearity (see Section 5.6.4). This

is a common issue in multiple linear regression when some of the many predictors included in the

model are correlated. Multicollinearity can lead to inflated standard errors, unstable coefficients,

and difficulty interpreting the model. Regularisation help manage multicollinearity by shrinking

coefficient estimates or setting some to zero.

Effectiveness in variable selection, reducing multicollinearity, and mitigating overfitting all con-

tribute to model simplification. Regularisation achieves similar outcomes by shrinking coefficient

estimates or setting some to zero, making the model easier to understand, explain, and interpret.

In this chapter, we will discuss three common regularisation techniques: Lasso, Ridge, and

Elastic Net Regression.

8.1 Ridge Regression (L2 Regularisation)

Ridge regression mathematically ‘tames’ the wildness of linear regression when faced with multi-

collinearity. It achieves this by adding a penalty term to the linear regression loss function—a term

123
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proportional to the square of the coefficients (the L2 norm). This penalty nudges the coefficients

towards zero, effectively shrinking them without forcing them to be exactly zero.

In linear regression, the loss function is typically the Mean Squared Error (MSE), which is the

average of the squared residuals (also known as the residual sum of squares, RSS). The optimisation

objective is to minimise this loss function. In other words, the linear regression model aims to find

the coefficients that minimise the average squared difference between the observed values and

the predicted values. The RSS is expressed in Equation 8.1:

𝑅𝑆𝑆(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)2 (8.1)

And the MSE, which is the loss function to be minimised, is in Equation 8.2:

𝑀𝑆𝐸(𝛽) = 1
𝑛

𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)2 (8.2)

Where:

• 𝑦𝑖 is the observed value for the 𝑖-th observation.
• 𝛽0 is the intercept.
• 𝛽𝑗 are the coefficients for the predictors.
• 𝑥𝑖𝑗 is the value of the 𝑗-th predictor variable for the 𝑖-th observation.
• 𝑛 is the number of observations.
• 𝑝 is the number of predictors.

The notation 𝑅𝑆𝑆(𝛽) and 𝑀𝑆𝐸(𝛽) indicates that these are functions of the coefficients 𝛽. The
optimisation objective for linear regression is to find the coefficients 𝛽0 and 𝛽1 to 𝛽𝑝 that minimise
the MSE. This can be expressed in Equation Equation 8.3:

min
𝛽

{1𝑛

𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)2} (8.3)

Ridge regression extends the optimisation of the least squares regression by introducing a

penalty term to the loss function. This penalty term is proportional to the square of the L2 norm of

the coefficient vector, penalising large coefficient values. Ridge regression is specifically designed

to handlemulticollinearity andmitigate issues caused by correlated predictors. It also helps prevent

overfitting when there are many predictors relative to the sample size, providing a more stable

estimation process.

The penalty term is controlled by a hyperparameter1 called lambda (𝜆) that determines the
strength of the penalty. Larger values of 𝜆 lead to more shrinkage of the coefficients. When 𝜆 =
0, Ridge Regression is equivalent to ordinary least squares regression. As 𝜆 approaches infinity,
all coefficients (except the intercept) approach zero. To find the optimal 𝜆, you might have to use
techniques like cross-validation. Cross-validation will be discussed later in Section Section 8.4.

The loss function in Ridge Regression is given by Equation 8.4:

𝐿𝑟𝑖𝑑𝑔𝑒(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)2 + 𝜆
𝑝

∑
𝑗=1

𝛽2𝑗 (8.4)

1Hyperparameters are configuration settings that are external to your model and not learned from the data itself.
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Where 𝜆 is the regularisation parameter controlling the penalty’s strength. Note that typically,
the intercept 𝛽0 is not included in the penalty term.
In Equation Equation 8.4, 𝐿𝑟𝑖𝑑𝑔𝑒(𝛽) is the Ridge Regression loss function. This loss function

includes the residual sum of squares (RSS) plus a penalty term 𝜆∑𝑝
𝑗=1 𝛽

2
𝑗 . The optimisation objective

in Ridge Regression is to find the values of the coefficients 𝛽1 through 𝛽𝑝 that minimise this
penalised loss function, while also finding the optimal value for the intercept 𝛽0.
Ridge regression introduces a bias-variance trade-off. By shrinking the coefficients, it intro-

duces a slight bias, as the model’s predictions may not perfectly match the training data. However,

this bias is often offset by a significant reduction in variance. The reduced variance means the

model’s predictions are more stable and less sensitive to small changes in the input data. This

trade-off often results in improved overall predictive performance, especially on new, unseen data.

So, Ridge Regression sacrifices a bit of bias (accuracy on the sample data) to gain a lot in terms

of reduced variance (generalisation to new data). This is a typical example of the bias-variance

trade-off in statistical modelling and machine learning, where we often find that a bit of bias can

lead to a much more robust and reliable model.

Unlike some other regularisation methods, such as principal component regression, Ridge

Regression maintains the interpretability of the coefficients in terms of their relationship with the

outcome. It is also versatile and can be applied to various types of regression models, including

linear and logistic regression.

8.2 Lasso Regression (L1 Regularisation)

Lasso (Least Absolute Shrinkage and Selection Operator) regression employs a different penalty

term compared to Ridge Regression. Instead of squaring the coefficients, Lasso Regression takes

their absolute values. The cost function in Lasso Regression is given in Equation Equation 8.5:

𝐿𝑙𝑎𝑠𝑠𝑜(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)2 + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗| (8.5)

In Equation Equation 8.5, 𝐿𝑙𝑎𝑠𝑠𝑜(𝛽) is the Lasso Regression loss function. It includes the residual
sum of squares (RSS) plus a penalty term 𝜆∑𝑝

𝑗=1 |𝛽𝑗| (L1 norm). This penalty term is the sum of
the absolute values of the coefficients, scaled by the regularisation parameter 𝜆 (similar to Ridge
Regression). Lasso regression seeks the values of 𝛽0 through 𝛽𝑝 that minimise 𝐿𝑙𝑎𝑠𝑠𝑜(𝛽). As with
Ridge Regression, the intercept 𝛽0 is typically not included in the penalty term.
The strength of Lasso Regression lies in its ability to shrink some coefficients all theway to zero,

effectively eliminating those variables from the model. This automatic variable selection makes

Lasso Regression well-suited for creating sparse models where only the most influential variables

are retained. This simplification aids in interpretation and can enhance model performance by

reducing noise and overfitting.

Lasso Regression still applies a degree of shrinkage for the coefficients that are not shrunk to

zero. Shrinkage reduces their variance and provide more stable models that are less sensitive to

fluctuations in the data. Similar to Ridge Regression, Lasso involves a trade-off between bias and

variance. The shrinkage introduces a small bias but can greatly reduce variance and result in better

overall predictions.

Lasso regression is useful when dealing with datasets that have a large number of potential

predictor variables. It helps identify the most relevant predictors. The end results is a simpler and

more interpretable model. If you suspect redundancy among your predictor variables, Lasso can
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prune them and retain only those that provide the best predictive value. As always, the optimal

value for 𝜆 should be determined through techniques like cross-validation.

8.3 Elastic Net Regression

Elastic net regression is a hybrid regularisation technique that combines the penalties of Ridge and

Lasso Regression. It tries to provide the advantages of both methods and mitigate their drawbacks.

Here, the penalty term is the weighted average of the L1 (Lasso) and L2 (Ridge) penalties. A

mixing parameter called alpha (𝛼) controls the weighting between the two penalties. When 𝛼 = 0,
Elastic Net is equivalent to Ridge Regression and when 𝛼 = 1 it is equivalent to Lasso Regression.
For values of 𝛼 between 0 and 1, Elastic Net blends the properties of both methods and provides
some flexibility to regularisation.

The cost function in Elastic Net Regression is given in Equation 8.6:

𝐿𝑒𝑛𝑒𝑡(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)2 + 𝜆 (𝛼
𝑝

∑
𝑗=1

|𝛽𝑗| + (1 − 𝛼)
𝑝

∑
𝑗=1

𝛽2𝑗 ) (8.6)

Where 𝛼 is the mixing parameter, with 0 ≤ 𝛼 ≤ 1.
In Equation 8.6 there is the familiar RSS plus the combined penalty term that is a weighted

sum of the L1 and L2 norms. The objective of Elastic Net Regression is again to minimise 𝐿𝑒𝑛𝑒𝑡(𝛽)
by seeking optimal values of 𝛽1 through 𝛽𝑝.
Like the other regularisation techniques, Elastic Net is also used when you have highly corre-

lated predictors. While Lasso Regression might arbitrarily select one variable from a group and

ignore the rest, Elastic Net tends to select groups of correlated features together and so provide

a more comprehensive understanding of variable importance. The flexibility of adjusting the 𝛼 pa-
rameter allows you to fine-tune the regularisation to best suit your specific dataset and modelling

goals. It balances variable selection (Lasso) and shrinkage (Ridge). Also, Elastic Net can outperform

Lasso and Ridge Regression in terms of prediction accuracy when dealing with high-dimensional

datasets where the number of predictors exceeds the number of observations.

Elastic net is a good option if you have a dataset with many potential predictor variables and

suspect strong correlations among them. Use it when you are uncertain whether pure variable

selection (Lasso) or pure shrinkage (Ridge) is the best approach. The challenge is that now we

also have to tune the 𝛼 parameter in addition to the regularisation parameter 𝜆. A caveat is that
Elastic Net retains the interpretability of individual coefficients but the interpretation becomes

slightly more nuanced due to the mixed penalty term. This requires a thoughtful approach to

understanding the model outputs.

8.4 Cross-Validation

The values of the hyperparameters (𝜆 or 𝛼) significantly affect the model’s performance and gen-
eralisation ability and so it necessitates careful optimisation. The cv.glmnet() function (see Sec-

tion 8.5) automates this process by performing both hyperparameter tuning2 and cross-validation.

It systematically evaluates different combinations of 𝜆 or 𝛼 values across multiple subsets of our
2The goal of hyperparameter tuning is to find the optimal combination of hyperparameters that leads to the best

model performance on your specific dataset. This is done by systematically evaluating different hyperparameter values

and selecting the combination that yields the best results.



8.5. R FUNCTION 127

data, using cross-validation to estimate their out-of-sample performance. This allows for the se-

lection of the hyperparameter combination that yields the best performance and thus avoids the

risk of overfitting and improves model generalisation.

The most widely used cross-validation method is k-fold cross-validation. The dataset is divided

into k equally sized subsets (specified by the user). The subsets are called ‘folds’. The model is then

trained k times, each time using k − 1 folds for training and the remaining fold for validation. It
provides a robust estimate of model performance by utilising all data points for both training and

validation. It balances computational cost and bias reduction. But, the choice of k can influence

results, and there’s a trade-off between bias and variance: lower k values may lead to higher bias

but lower variance, whilst higher k values do the opposite.

The general approach taken in k-fold cross validation is that, for each combination of hyperpa-

rameter values, we:

1. Perform k-fold cross-validation on the training data.

2. Calculate the average performance metric (e.g., mean squared error) across all folds.

3. Select the hyperparameter values that produced the best average performance.

This ensures that the hyperparameters we select are robust and generalissable to unseen data,

rather than being overly influenced by the peculiarities of a single training set.

K-fold cross-validation is the most frequently-used form of cross-validation, but several other

types exist. Some of them are:

Leave-one-out cross-validation (LOOCV) is an extreme case of k-fold cross-validation where

k equals the number of data points. This method trains the model on all but one data point and

validates on the left-out point, repeating this process for each data point. LOOCV provides an

nearly unbiased estimate of model performance but can be computationally expensive for large

datasets. It’s most often used for small datasets where maximising training data is important. The

downside is that LOOCV can suffer from high variance, especially for noisy datasets.

Stratified cross-validation ensures each fold maintains the same proportion of samples for

each class as in the complete dataset. It useful for imbalanced datasets or when dealing with

categorical outcomes. By preserving the class distribution in each fold, stratified cross-validation

provides a more representative evaluation of model performance across all classes. Implementing

stratification can be complex for multi-class problems or continuous outcomes.

Holdout validation is the simplest form of cross-validation. The dataset is split into a training

set and a test set. Typically, about 70-80% of the data is used for training and the balance is

reserved for testing. The model is trained on the training set and then evaluated on the held-

out test set. It is computationally efficient and provides a quick estimate of model performance

but it has several limitations. Firstly, because it doesn’t make full use of the available data for

training, it can be an issue for smaller datasets. Secondly, the results can be highly dependent on

the particular split chosen, leading to high variance in performance estimates. This is especially

true for smaller datasets or when the split doesn’t represent the overall data distribution well.

But holdout validation remains useful for large datasets or as a quick initial assessment before

applying more complex cross-validation techniques.

The examples will show k-fold cross validation, but you can easily adapt the code to use other

cross-validation methods.

8.5 R Function

In R, the glmnet package provides functions for fitting regularised linearmodels. The cv.glmnet()

function performs cross-validated regularisation path selection for the Elastic Net, Lasso, and
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Ridge Regression models.

cv.glmnet(x, y, alpha = 1, lambda = NULL, nfolds = 10,

standardize = TRUE)

The function takes the following arguments:

• x: A matrix of predictors.

• y: A matrix of response variables (but read the help file as this varies depending on the data

type).

• alpha: The mixing parameter for the Elastic Net penalty. When alpha = 0, the model is a

Ridge Regression. When alpha = 1, the model is a Lasso Regression. The default value is

alpha = 1.

• lambda: A vector of regularisation parameters. The function fits a model for each value of

lambda and selects the best one based on cross-validation. The default is lambda = NULL,

which means the function will generate a sequence of 100 values between 10^-2 and 10^2.

• nfolds: The number of folds in the cross-validation. The default is nfolds = 10.

• standardize: A logical value indicatingwhether the predictors should be standardised. The

default is standardize = TRUE.

It is not clearly documented in the function’s help file, but the ‘glm’ in the function name indi-

cates that the function fits a generalised linear model. This implies ‘gaussian,’ ‘binomial,’ ‘poisson,’

‘multinomial,’ ‘cox,’ and ‘mgaussian’ families are supported, which can be supplied via the family

argument to the function. The ‘net’ part of the name indicates that the function fits an Elastic

Net, thus allowing choose between Lasso and Ridge by setting alpha to 1 or 0 (or something

in-between). The ‘cv’ part of the name indicates that the function performs cross-validation.

8.6 Example 1: Ridge Regression

The data I use here should be well-known by now. They are the same seaweed dataset used

throughout Chapter 5. I will use Ridge Regression to predict the response variable Y using the

predictors annMean, augMean, augSD, febSD, and febRange.

First, I will read in the data and prepare them in the format required by cv.glmnet(). This

involves standardising the response variable and predictors and converting them to matrices. I

specify the range of 𝜆 values to try and set up 10-fold cross-validation. I then fit the model and
plot the results of the cross-validation.

# Ridge Regression with Cross-Validation

# Set seed for reproducibility

set.seed(123)

# Load necessary libraries

library(glmnet)

library(tidyverse)

# Read the data

sw <- read.csv("data/spp_df2.csv")
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Figure 8.1: Cross-validation statistics for the Ridge Regression approach applied to the seaweed

data.

# Standardise the response variable and present as a matrix

y <- sw ||>

select(Y) ||>

scale(center = TRUE, scale = FALSE) ||>

as.matrix()

# Provide the predictors as a matrix

X <- sw ||>

select(-X, -dist, -bio, -Y, -Y1, -Y2) ||>

as.matrix()

# Set up lambda sequence

lambdas_to_try <- 10 ^ seq(-3, 5, length.out = 100)

# Perform 10-fold cross-validation

ridge_cv <- cv.glmnet(X, y, alpha = 0, lambda = lambdas_to_try,

standardize = TRUE, nfolds = 10)

# Plot cross-validation results (ggplot shown)

plot(ridge_cv)

Figure 8.1, generated from the cv.glmnet() object, illustrates the relationship between the

regularisation parameter 𝜆 and the model’s cross-validation performance. The y-axis represents
the mean squared error (MSE) from cross-validation, whilst the x-axis shows the 𝑙𝑜𝑔(𝜆) values
tested. Red dots indicate the mean MSE for each 𝜆, with error bars showing ±1 standard error.
Two vertical dashed lines highlight important 𝜆 values: 𝜆𝑚𝑖𝑛, which minimises the mean MSE,
and 𝜆1𝑠𝑒, the largest 𝜆 within one standard error of the minimum MSE. One may select the op-
timal 𝜆 using either the 𝜆𝑚𝑖𝑛 or the 𝜆1𝑠𝑒 rule, accessible via cv.glmnet_object$lambda.min
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and cv.glmnet_object$lambda.1se, respectively. To utilise the chosen 𝜆, one refits the model
using glmnet() and extract the coefficients.

For performance evaluation, one can calculate the sum of squared residuals (SSR) as the sum

of squared differences between observed and predicted values, and the R-squared value as the

square of the correlation between observed and predicted values, representing the proportion of

variance in the dependent variable that is predictable from the independent variable(s).

The results show that the model explains 67.07% of the variance in the response variable:

# Fit models and calculate performance metrics

fit_model_and_calculate_metrics <- function(X, y, lambda) {

model <- glmnet(X, y, alpha = 0, lambda = lambda,

standardize = TRUE)

y_hat <- predict(model, X)

ssr <- sum((y - y_hat) ^ 2)

rsq <- cor(y, y_hat) ^ 2

list(model = model, ssr = ssr, rsq = rsq)

}

# Best cross-validated lambda

lambda_cv <- ridge_cv$lambda.min

mod_cv <- fit_model_and_calculate_metrics(X, y, lambda_cv)

# Print results

mod_cv

> $model

>

> Call: glmnet(x = X, y = y, alpha = 0, lambda = lambda, standardize = TRUE)

>

> Df %Dev Lambda

> 1 5 67.06 0.001

>

> $ssr

> [1] 5.321994

>

> $rsq

> s0

> Y 0.6706681

As already indicated, an alternative to using lambda.min for selecting the optimal 𝜆 value is
to use the 1 SE rule, which is contained in the attribute lambda.1se. This reduces the risk of

overfitting as it tends to select a simpler model. We can use this value to refit the model and

extract the coefficients, as before.

AIC and BIC can also be used to select suitable models. These information criteria penalise

the model for the number of parameters used, providing a balance between model complexity

and goodness of fit. The calculate_ic() function below calculates the AIC and BIC for a given

model and returns the results in a list. We can then use this function to calculate the AIC and BIC

for each model fit with each 𝜆 in lambdas_to_try:
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# Calculate AIC and BIC

calculate_ic <- function(X, y, lambda) {

model <- glmnet(X, y, alpha = 0, lambda = lambda,

standardize = TRUE)

betas <- as.vector(coef(model)[-1])

resid <- y - (scale(X) %*% betas)

H <- scale(X) %*%

solve(t(scale(X)) %*% scale(X) + lambda *

diag(ncol(X))) %*% t(scale(X))

df <- sum(diag(H))

log_resid_ss <- log(sum(resid ^ 2))

aic <- nrow(X) * log_resid_ss + 2 * df

bic <- nrow(X) * log_resid_ss + log(nrow(X)) * df

list(aic = aic, bic = bic)

}

ic_results <- map(lambdas_to_try, ~ calculate_ic(X, y, .x)) ||>

transpose()

A plot of the change in the information criteria with 𝑙𝑜𝑔(𝜆) is shown in Figure 8.2. The optimal
𝜆 values according to both AIC and BIC can then be used to refit the model and arrive at the
coefficients of interest.

# Plot information criteria

plot_ic <- function(lambdas, ic_results) {

df <- data.frame(lambda = log(lambdas),

aic = unlist(ic_results$aic),

bic = unlist(ic_results$bic))

df_long <- pivot_longer(df, cols = c(aic, bic),

names_to = "criterion",

values_to = "value")

ggplot(df_long, aes(x = lambda, y = value, color = criterion)) +

geom_line() +

scale_color_manual(values = c("aic" = "orange", "bic" = "skyblue3"),

labels = c("aic" = "AIC", "bic" = "BIC")) +

labs(x = "log(lambda)",

y = "Information Criterion", color = "Criterion") +

theme_minimal() +

theme(legend.position = "top",

legend.direction = "horizontal",

legend.box = "horizontal")

}

plot_ic(lambdas_to_try, ic_results)

Now we find the 𝜆 values that minimise the AIC and BIC, and refit the models using these
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Figure 8.2: Plot of information criteria for best model fit selected through Ridge Regression.

values. It so happens that both AIC and BIC selects the same 𝜆 values:

# Optimal lambdas according to both criteria

lambda_aic <- lambdas_to_try[which.min(ic_results$aic)]

lambda_bic <- lambdas_to_try[which.min(ic_results$bic)]

# Fit final models using the optimal lambdas

mod_aic <- fit_model_and_calculate_metrics(X, y, lambda_aic)

mod_bic <- fit_model_and_calculate_metrics(X, y, lambda_bic)

For interest sake, we may also produce a plot that traces the coefficients of the model as

𝜆 changes. This can help us understand how the coefficients shrink as 𝜆 increases, and which
variables are most important in the model. The plot below shows the Ridge Regression coefficients

path for each variable in the model (Figure 8.3).

# Plot the Ridge Regression coefficients path

res <- glmnet(X, y, alpha = 0, lambda = lambdas_to_try,

standardize = FALSE)

plot(res, xvar = "lambda")

legend("topright", lwd = 1, col = 1:6,

legend = colnames(X), cex = 0.7)

So, after having demonstrated the different methods for selecting the optimal 𝜆 value, we can
now summarise the results:

> [1] "CV Lambda: 0.001"

> [1] "AIC Lambda: 0.3854"

> [1] "BIC Lambda: 0.3854"

> [1] "CV R-squared: 0.6707"

> [1] "AIC R-squared: 0.6025"

> [1] "BIC R-squared: 0.6025"

Nowwe can extract the coefficient produced from models selected via the AIC and CV meth-

ods.
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Figure 8.3: Plot of the Ridge Regression coefficients paths.

res_aic <- glmnet(X, y, alpha = 0, lambda = lambda_aic,

standardize = FALSE)

res_aic

>

> Call: glmnet(x = X, y = y, alpha = 0, lambda = lambda_aic, standardize = FALSE)

>

> Df %Dev Lambda

> 1 5 13.46 0.3854

coef(res_aic)

> 6 x 1 sparse Matrix of class "dgCMatrix"

> s0

> (Intercept) -0.021327121

> augMean 0.009856026

> febRange 0.007118466

> febSD -0.001074341

> augSD 0.010696102

> annMean 0.008114467

res_cv <- glmnet(X, y, alpha = 0, lambda = lambda_cv,

standardize = FALSE)

res_cv

>

> Call: glmnet(x = X, y = y, alpha = 0, lambda = lambda_cv, standardize = FALSE)

>

> Df %Dev Lambda

> 1 5 66.77 0.001

coef(res_cv)

> 6 x 1 sparse Matrix of class "dgCMatrix"

> s0
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> (Intercept) -0.12384440

> augMean 0.22200994

> febRange 0.04287655

> febSD -0.03446642

> augSD 0.02699458

> annMean 0.04324177

Ridge regression adds a penalty to the size of the coefficients, resulting in their shrinkage

towards zero. This penalty affects all coefficients simultaneously. Notably, there is a difference in

the model fit obtained using 𝜆𝐴𝐼𝐶 (which is larger) and 𝜆𝑚𝑖𝑛 (which is smaller). The former model
explains 55.69% of the variance, compared to 𝜆𝑚𝑖𝑛, which explains 63.37% of the variance.

Although shrinkage affects the absolute magnitude of the coefficients (they are biased esti-

mates of the true relationships between the predictors and the response variable), the coefficients

in Ridge Regression retain their general meaning—they still represent the change in the response

variable associated with a one-unit change in the predictor variable, holding other predictors

constant. While the absolute values of the coefficients may be biased due to regularisation, the

relative importance of the predictors can still be interpreted. The magnitude of the coefficients

can indicate the relative influence of each predictor on the response variable, even if their exact

values are reduced.

Importantly, the predictive ability of the model can improve with shrunk coefficients because

Ridge Regression reduces overfitting and enhances the model’s generalisability to new, unseen

data. By stabilising the coefficient estimates, the model often achieves better performance on

validation and test datasets, which is important should robust predictive analytics be the goal.

8.7 Example 2: Lasso Regression

Doing a Lasso Regression is easy. Simply change the alpha parameter to 1 in the glmnet function.

The rest of the code remains the same. I’ll show only the final output of this analysis to avoid

repetition.

# Print results

mod_cv

> $model

>

> Call: glmnet(x = X, y = y, alpha = 1, lambda = lambda, standardize = TRUE)

>

> Df %Dev Lambda

> 1 5 67 0.001

>

> $ssr

> [1] 5.332835

>

> $rsq

> s0

> Y 0.6701255

coef(mod_cv$model)
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Figure 8.4: Cross-validation statistics for Lasso Regression applied to the seaweed data.

> 6 x 1 sparse Matrix of class "dgCMatrix"

> s0

> (Intercept) -0.12886019

> augMean 0.26097296

> febRange 0.03431981

> febSD -0.02497532

> augSD 0.02441380

> annMean 0.02021480

# Print results

print(paste("CV Lambda:", lambda_cv))

> [1] "CV Lambda: 0.001"

print(paste("CV R-squared:", round(mod_cv$rsq, 4)))

> [1] "CV R-squared: 0.6701"

Lasso regression incorporates an L1 penalty term in its cost function, which shrinks some

coefficient estimates to exactly zero. By reducing certain coefficients to zero, Lasso effectively

eliminates those predictors from the model, which achieves automatic variable selection:

• When 𝜆 is small, the penalty is minimal, and Lasso behaves similarly to ordinary least squares
regression, retaining most coefficients.

• When 𝜆 is large, the penalty increases, causingmore coefficients to shrink to zero. This results
in a sparser model where only the most significant predictors have non-zero coefficients.

In our example (Figure 8.4),we see at 𝜆𝑚𝑖𝑛, the number of non-zero coefficients isminimised—all
five coefficients remain. At 𝜆1𝑠𝑒, the number of non-zero coefficients decreases to four. Conse-
quently, for higher values of 𝜆, more predictors will have coefficients exactly equal to zero. This is
also seen in Figure 8.4. In Figure 8.5 we can see that the first predictor to reach zero is annMean,

then febSD, febRange, and so forth. The implication is that they are excluded from the model

and the model is simplified. This leads to several benefits: reduced multicollinearity, improved

interpretability, and better generalisation to new data.
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Figure 8.5: Plot of the Lasso Regression coefficients paths.

Coefficients that remain non-zero after Lasso regularisation are considered more important

predictors. Those remaining coefficients can be interpreted similarly to standard linear regression:

as the expected change in the response variable for a one-unit change in the predictor, holding

other predictors constant.

The 𝜆 parameter controls the amount of bias introduced. While Lasso can produce biased
estimates, it reduces variance, often resulting in a model that performs better on new, unseen

data. This trade-off enhances predictive accuracy but means that the exact coefficient values may

not represent the true underlying relationships as closely as those in an unregularised model.

Despite regularisation, the relative magnitudes of the non-zero coefficients provide a glimpse

into predictor importance. Larger absolute values of coefficients indicate stronger relationships

with the response variable. The exact numerical values are biased, but ranking predictors by their

coefficients still offers useful insight into their relative importance.

8.8 Example 3: Elastic Net Regression

In this last example we’ll look at Elastic Net Regression, which combines the L1 and L2 penalties of

Lasso and Ridge Regression. There are now two parameters to optimise: 𝛼 and 𝜆. The 𝛼 parameter
controls the mix between the L1 and L2 penalties, with 𝛼 = 0 behaving like Ridge Regression
and 𝛼 = 1 behaving like Lasso Regression. For 𝛼 values between 0 and 1, Elastic Net combines
the strengths of both Lasso and Ridge Regression. Optimisation of 𝛼 and 𝜆 is also done using
cross-validation. In practise, the steps are:

1. Set up a grid of 𝛼 values (from 0 to 1) and 𝜆 values to try.
2. Performs cross-validation for each combination of 𝛼 and 𝜆 using cv.glmnet().
3. Select the best 𝛼 and 𝜆 combination based on the minimum mean cross-validated error.
4. Fit the final model using the best 𝛼 and 𝜆.
5. Calculate the performance metrics.

6. For the Elastic Net model with the best alphaCreate plots similar to those in the Ridge and

Lasso examples.
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# Define the range of alpha values to try

alphas_to_try <- seq(0, 1, by = 0.1)

# Define the range of lambda values to try

lambdas_to_try <- 10^seq(-3, 3, length.out = 100)

# Perform grid search with cross-validation

cv_results <- lapply(alphas_to_try, function(a) {

cv.glmnet(X, y, alpha = a, lambda = lambdas_to_try,

standardize = TRUE, nfolds = 10)

})

# Find the best alpha and lambda

best_result <- which.min(sapply(cv_results, function(x) min(x$cvm)))

best_alpha <- alphas_to_try[best_result]

best_lambda <- cv_results[[best_result]]$lambda.min

# Fit the final model with the best parameters

final_model <- glmnet(X, y, alpha = best_alpha,

lambda = best_lambda,

standardize = TRUE)

# Calculate performance metrics

y_hat <- predict(final_model, X)

ssr <- sum((y - y_hat) ^ 2)

rsq <- cor(y, y_hat) ^ 2

> [1] "Best Alpha: 0.3"

> [1] "Best Lambda: 0.001"

> [1] "R-squared: 0.6706"

The model coefficients are:

coef(cv_results[[best_result]])

> 6 x 1 sparse Matrix of class "dgCMatrix"

> s1

> (Intercept) -0.117063010

> augMean 0.240447330

> febRange 0.015404286

> febSD -0.007224065

> augSD 0.014882111

> annMean 0.026504736

The interpretation of coefficients in Elastic Net is a blend of Ridge and Lasso. Some coefficients

may be shrunk to zero (feature selection), while others are shrunk but remain non-zero (magnitude

reduction). The non-zero coefficients retain their general meaning with an emphasis on their

relative importance.
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Figure 8.6: Cross-validation statistics for Elastic Net Regression applied to the seaweed data.
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Figure 8.7: Plot of the Elastic Net Regression coefficients paths.

8.9 Theory-Driven and Data-Driven Variable Selection

The choice between theory-driven and data- or statistics-driven variable selection represents

an important consideration that can greatly influence model interpretation, its predictive power,

and your value as an ecologist. This decision reflects a broader tension in scientific methodology

between deductive and inductive reasoning. Each offers advantages and limitations that you

should be aware of as an ecologist.

Theory-driven variable selection is core to the scientific method. It relies on a priori knowledge

and established ecological theories (as far as they exist in ecology!) to guide your choice of predic-

tors in a model. This aligns closely with the hypothetico-deductive method, where we formulate

hypotheses based on existing knowledge and subsequently test these against the data we collect.

The strength of this method lies in its interpretability. Models built on theoretical foundations

often contribute directly to testing and refining ecological hypotheses. By focusing on variables

with known or hypothesised relationships (with mechanisms often rooted in ecophysiological
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or ecological inquiries), the theory-driven hypothetico-deductive method should lead to more

parsimonious models that are less prone to overfitting and more reflecting of reality.

Theory-driven selection is not without its drawbacks. It requires that we have a good grasp of

the mechanism underlying our favourite ecological system. This is not always the case in complex

systems where the underlying mechanisms are not well understood. Theory-driven selection can

then lead to the exclusion of important variables that were not initially hypothesised and it can

limit the scope of the analysis and potentially overlook significant relationships in the data.

A naive young ecologist might place undue value on the notion that their hard work collecting

diverse data and developing hypotheses should all be reflected in their final model. This can lead

to confirmation bias, where one is more likely to select variables that support our hypotheses

and ignore those that do not. This bias can compromise the objectivity of the model and lead to

skewed results that do not accurately represent the underlying ecological processes.

Moreover, the insistence on including all variables that were initially considered important can

result in overly complex models. Such models can be difficult to interpret and may suffer from

overfitting, where the model captures noise rather than the true signal in the data. Overfitted

models perform well on the data we collected but poorly on new, unseen data. The consequence

is a loss of predictive power and generalisability.

Another weakness of theory-driven variable selection is that the reliance on existing theories

or the novel, promising hypothsis of the day may lead us to overlook important but unexpected

relationships in the data. In complex ecological systems, where our theoretical understanding

may be incomplete, some variables could be missed entirely—these might in fact hold the key to

the real cause of the ecological patterns we observe. This limitation becomes concerning when

studying ecosystems or phenomena that are not well understood or are undergoing rapid changes,

such as those affected by climate change or novel anthropogenic pressures.

On the other hand, data-driven approaches, including regularisation techniques, VIF, and for-

ward model variable selection (Chapter 5), allow the data itself to guide variable selection. These

methods are increasingly used in today’s era of high-dimensional datasets common in modern eco-

logical research. The primary advantage of data-driven selection lies in its potential for discovery—

it can uncover unexpected relationships and generate new hypotheses, which is valuable in com-

plex ecological systems where interactions may not be immediately apparent.

Data-driven methods arewell-suited for handling the complexity often encountered in environ-

mental and ecological datasets, where numerous potential predictors may co-occur and interact.

They offer a degree of objectivity, reducing the potential for our personal biases in variable selec-

tion. But these approaches are not without risks. There’s a danger of identifying relationships that

are statistically significant but ecologically meaningless—we refer to this as spurious correlations

(e.g. the belief that consuming carrots significantly improves our night vision). Moreover, models

with many variables can present significant interpretability challenges, especially when complex

interactions are present. This can make it difficult to extract meaningful (plausible) insights from

the model and to communicate results to a broader audience.

In practice, the most robust approach to selecting which of the multitude of variables to

include in our model often involves a thoughtful combination of theory-driven and data-driven

methods. Well-trained ecologists should start with theory-driven variable selection to identify the

core predictors based on established ecological principles. We could then employ regularisation

techniques to explore additional variables and potential interactions, and use the results to refine

our models and generate new hypotheses for future research.

This hybrid approach combines the strengths of bothmethods. It allows for rigorous hypothesis

testing while remaining open to unanticipated and new insights from the data. In ecology, where

systems are often characterised by complex, non-linear relationships and interactions that may

vary across spatial and temporal scales, this two-pronged approach offers distinct benefits.
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Consider how these methods complement theoretical knowledge. Use variable selection meth-

ods as tools for prediction, and to assit generating new insights and hypotheses about ecosystems.

The choice between theory-driven and data-driven variable selection is not a binary one, but

rather a spectrum of approaches.
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Non-Parametric Methods
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Chapter 9

Testing Assumptions

Assumption tests are a fundamental component of any statistical analysis workflow. They ensure

the validity, reliability, and robustness of statistical analyses. Although these tests test assumptions

about parametric statistical methods, they are generally non-parametric, meaning they do not

assume a specific probability distribution for the data.

9.1 Tests for Normality

In biological research, it is often important to determine whether a normal distribution adequately

represents the underlying population distribution. This assessment is relevant when applying

statistical procedures that rely on the assumption of normality, such as many of those discussed

in earlier chapters. However, note that not all biological data conform to a normal distribution. In

fact, many natural processes will result in non-normal data.

Assessing normality allows us to make informed decisions about appropriate statistical meth-

ods. If the data reasonably approximates a normal distribution,we can confidently apply parametric

tests using probability calculations based on the normal curve. Conversely, if the data significantly

deviates from normality, alternative non-parametric approaches may be more suitable.

Beyond simply validating statistical assumptions, examining the distribution of biological data

can offer valuable insights into the underlying mechanisms and processes shaping the population.

Identifying deviations from normality can challenge existing hypotheses, reveal hidden patterns, or

suggest the influence of unanticipated factors. Therefore, normality tests are not only a technical

requirement but they may also offer a tool for understanding the biological phenomena under

investigation.

In this section, we will explore a range of graphical methods (e.g., histograms, Q-Q plots) and

statistical tests (e.g., Shapiro-Wilk test, Kolmogorov-Smirnov test) to assess the goodness-of-fit

of a normal distribution to our data.
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9.1.1 Shapiro-Wilk Test

9.1.2 Kolmogorov-Smirnov Test

9.1.3 Anderson-Darling Test

9.1.4 Lilliefors Test

9.1.5 Jarque-Bera Test

9.2 Tests for Homoscedasticity

9.2.1 Breusch-Pagan Test

9.2.2 White’s Test

9.2.3 Levene’s Test

9.2.4 Bartlett’s Test

9.2.5 Fligner-Killeen Test



Chapter 10

Quantile Regression

In traditional quantile regression, we model the conditional quantiles of the response variable

given the predictor variables. However, when you want to study how different quantiles of the

predictor variable (e.g., wind stress curl) affect the response variable (e.g., SST and upwelling

metrics), you need to employ methods that can capture these dynamics.

10.1 Understanding the Challenge

• Standard Quantile Regression: Models the relationship between predictor variables and

specific quantiles of the response variable.

• Your Objective: To understand how different quantiles of the predictor variable influence

the response variable.

10.2 Possible Approaches

1. Quantile-on-Quantile Regression (QQR):

• Concept:

– QQR extends traditional quantile regression by examining how quantiles of the

predictor variable affect quantiles of the response variable.

– It provides a more comprehensive picture of the dependence structure between

the two variables across their entire distributions.

• Implementation Steps:

1. Estimate Conditional Quantiles of the Predictor Variable:

– For each quantile 𝜏 of the predictor variable (wind stress curl), calculate the
quantile values.

2. Model Response Quantiles Conditional on Predictor Quantiles:

– For each quantile 𝜃 of the response variable (SST), model it as a function of the
predictor variable’s quantiles.

– The model can be specified as:

𝑄𝜃(𝑆𝑆𝑇 ∣ 𝑄𝜏(Wind Stress Curl)) = 𝛽0(𝜃, 𝜏) + 𝛽1(𝜃, 𝜏) × 𝑄𝜏(Wind Stress Curl)
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3. Interpretation:

– The coefficients 𝛽1(𝜃, 𝜏) show how the 𝜏-th quantile of the wind stress curl
affects the 𝜃-th quantile of SST.

– By varying 𝜃 and 𝜏, you can map out the entire dependence structure.
• Advantages:

– Captures non-linear and asymmetric relationships between the variables.

– Allows for interactions between different parts of the distributions.

• Considerations:

– Computational Complexity: Estimating the model for all combinations of 𝜃 and 𝜏
can be computationally intensive.

– Data Requirements: Requires a large dataset to obtain reliable estimates across

quantiles.

2. Binning the Predictor Variable:

• Concept:

– Divide the predictor variable into bins based on its quantiles (e.g., quartiles or

deciles).

– Within each bin, analyse the relationship between the predictor and response

variable.

• Implementation Steps:

1. Quantile Binning:

– Divide wind stress curl data into quantile-based bins.

2. Within-Bin Analysis:

– For each bin, perform regression analysis to see how variations within that bin

affect SST.

3. Comparative Analysis:

– Compare the regression coefficients across bins to see if the effect of wind

stress curl on SST changes across its distribution.

• Advantages:

– Simpler to implement and interpret.

– Highlights non-linear relationships and threshold effects.

• Considerations:

– Loss of Information: Binning can lead to loss of information due to grouping con-

tinuous data.

– Boundary Issues: Care must be taken at the edges of bins to ensure continuity.

3. Interaction Terms and Non-Linear Models:

• Concept:

– Introduce interaction terms or non-linear transformations to allow the effect of

wind stress curl to vary across its own distribution.

• Implementation Steps:

1. Create Interaction Terms:
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– Include terms like Wind Stress Curl × 𝐼(Wind Stress Curl > 𝑄𝜏), where 𝐼 is an
indicator function, and 𝑄𝜏 is the 𝜏-th quantile.

2. Non-Linear Models:

– Use models like Generalised Additive Models (GAMs) to allow for non-linear

relationships.

3. Quantile Regression with Interactions:

– Combine quantile regression with interaction terms to see how the effect

changes at different levels of the predictor variable.

• Advantages:

– Flexible modelling of relationships.

– Can capture threshold effects and non-linearities.

• Considerations:

– Model Complexity:More complex models require careful interpretation and vali-

dation.

– Overfitting Risk: Including too many interactions can lead to overfitting, especially

with limited data.

4. Copula-Based Approaches:

• Concept:

– Use copulas to model the joint distribution of the predictor and response variables,

allowing for dependence in their marginal distributions.

• Implementation Steps:

1. Estimate Marginal Distributions:

– Determine the marginal distributions of wind stress curl and SST.

2. Select Appropriate Copula:

– Choose a copula function that captures the dependence structure (e.g., Clay-

ton, Gumbel).

3. Model the Joint Distribution:

– Use the copula to model the joint behaviour, focusing on the tails of the distri-

butions.

• Advantages:

– Captures complex dependence structures.

– Particularly useful for modelling tail dependencies.

• Considerations:

– Statistical Expertise Required: Copula models can be mathematically complex.

– Data Demands: Requires large datasets for reliable estimation.

10.3 Applying Quantile-on-Quantile Regression to the Upwelling

Problem

Let’s focus on Quantile-on-Quantile Regression as it seems most relevant to our situation and

requirement.
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• Model Estimation:

– For each chosen quantile 𝜏 of wind stress curl (e.g., 10th, 25th, 50th, 75th, 90th per-
centiles), extract the corresponding values.

– For each chosen quantile 𝜃 of SST, perform quantile regression using the extracted
wind stress curl quantile as the predictor.

• Analysis:

– Examine the estimated coefficients 𝛽1(𝜃, 𝜏) across different combinations of 𝜃 and 𝜏.
– Identify patterns where certain quantiles of wind stress curl have a stronger or weaker

effect on specific quantiles of SST.

– For example, you may find that extreme high values (e.g., 90th percentile) ofwind stress

curl significantly affect the lower quantiles (e.g., 10th percentile) of SST, indicating

strong upwelling events.

• Visualisation:

– Create heatmaps or surface plots to visualize the coefficient values across the (𝜃, 𝜏)
grid.

– Plot the estimated relationships to interpret the effects intuitively.

• Robustness Checks:

– Perform bootstrapping to assess the stability of your estimates.

– Test for statistical significance of the coefficients.

10.4 Alternative Approaches

If quantile-on-quantile regression proves too complex or data-intensive, consider the following

simplified methods:

• Conditional Mean Regression with Binned Predictors:

– Bin wind stress curl into quantiles and use these as categorical predictors in a standard

regression model.

– This approach simplifies the analysis while still providing insights into how different

levels of wind stress curl affect SST.

• Threshold Regression Models:

– Use models that allow for different regression regimes based on the value of the pre-

dictor variable.

– For example, a piecewise linear model where the slope changes when wind stress curl

exceeds certain quantiles.

10.5 Recommendations

• Data Exploration:

– Before modeling, thoroughly explore your data to understand the distributions and

potential relationships.

– Use scatter plots, quantile plots, and correlation analyses.
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• Model Selection:

– Start with simpler models to establish baseline relationships.

– Gradually incorporate complexity as needed, based on initial findings.

• Validation:

– Use cross-validation techniques to assess the predictive performance of your models.

– Comparemodels using appropriatemetrics (e.g., Akaike Information Criterion formodel

selection).

• Expert Consultation:

– Collaborate with a statistician experienced in advanced regression techniques.

– This can help ensure that your models are correctly specified and interpreted.

10.6 Conclusion

Studying which quantiles of the predictor variable affect the response variable adds a layer of com-

plexity but can yield valuable insights into the dynamics of upwelling events. Quantile-on-Quantile

Regression offers a direct method to explore these relationships comprehensively. However, it’s

essential to balance methodological rigour with practical considerations like data availability and

computational feasibility.

By carefully selecting your approach and thoroughly validating your models, you can enhance

your understanding of howwind stress curl influences SST and upwelling metrics across different

conditions. This, in turn, can contribute significantly to the field by providing a more detailed

characterization of upwelling dynamics and their drivers.

10.7 Additional Resources

• Literature on Quantile-on-Quantile Regression:

– Hao, L., & Naiman, D. Q. (2007). Quantile Regression. Sage Publications.

– Sim, N., Zhou, H., & Goh, T. (2019). Quantile-on-Quantile Regression Approach to

Analyzing the Impact of Oil Price Changes on Stock Returns. Energy Economics, 80,

297-309.

• Statistical Software:

– R Packages:

* quantreg: For quantile regression.

* qgam: For quantile generalized additive models.

* Custom scripts may be needed for quantile-on-quantile regression.

10.8 Final Thoughts

Your inquiry demonstrates a deep engagement with the methodological aspects of your research.

By extending your analysis to consider how different quantiles of wind stress curl affect SST and

upwelling metrics, you are likely to uncover nuanced relationships that can advance understanding

in this area. Don’t hesitate to reach out to experts in statistical modeling to support this aspect of

your work.
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Chapter 11

Generalised Additive Models

GAMs utilise a sum of smooth functions, each of which may depend on different subsets of

the predictors. This additive structure, with smooth functions modelling the nonlinear effects of

different predictor variables, allows GAMs to capture complex, nonlinear relationships without

the need for a single, global parametric form. GAMs are useful in areas where the data exhibit

complex patterns that are not easily described by traditional parametric or even non-parametric

models.

Unlike polynomial regressions or specific nonlinear models that capture functional relation-

ships with parameters directly linked to the system’s mechanics, GAMs do not necessarily provide

parameters that correspond to a mechanistic understanding. Instead, they offer flexibility and ro-

bustness inmodelling, making them suitable for awide range of applicationswhere the relationship

dynamics are complex and not well-defined by simpler models.

In GAMs, the smooth functions are typically represented using regression splines (Figure A).

Splines are piecewise polynomial functions that are flexible and can approximate complex nonlin-

ear relationships. In GAMs, the smooth functions are estimated using various types of regression

splines, such as Thin Plate Regression Splines, Cubic Regression Splines, and P-Splines (B-Splines).

These spline functions are used to model the nonlinear effects of the predictor variables in a

flexible and data-driven manner, without assuming any specific parametric form. A GAM can be

expressed as:

𝑌𝑖 = 𝛼 + 𝑓1(𝑋𝑖1) + 𝑓2(𝑋𝑖2) + … + 𝑓𝑝(𝑋𝑖𝑝) + 𝜖𝑖 (11.1)

Where:

• 𝑌𝑖 is the response variable for the 𝑖-th observation,
• 𝛼 is the intercept,
• 𝑓𝑗(𝑋𝑖𝑗) are smooth functions of the predictor variables 𝑋𝑖𝑗 (for 𝑗 = 1, 2, … , 𝑝), and
• 𝜖𝑖 is the error term for the 𝑖-th observation.

The degree of smoothness of the smooth functions 𝑓𝑗 is typically chosen based on the data
and the modelling objectives, often using cross-validation or other model selection techniques.
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Chapter 12

Summary

In summary, this book has no content whatsoever.

1 + 1

[1] 2
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causal, 93

nonlinear regression, 93

overfitting, 49

polynomial regression, 49
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